

UNITED STATES AIR FORCE
RESEARCH LABORATORY

THE DOUBLE R THEORY OF
LANGUAGE COMPREHENSION

Jerry T. Ball

Air Force Research Laboratory
Warfighter Training Research Laboratory

6030 South Kent Street
Mesa, AZ 85212-6061

February 2004

AFRL-HE-AZ-TR-2003- 0110

Approved for public release; distribution is unlimited.

AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
Human Effectiveness Directorate
Warfighter Training Research Division
6030 South Kent Street
Mesa AZ 85212-6061

NOTICES

Publication of this report does not constitute approval or disapproval of the ideas or

the findings. It is published in the interest of STINFO exchange.

Using Government drawings, specifications, or other data included in this

document for any purpose other than Government-related procurement does not
in any way obligate the US Government. The fact that the Government formulated
or supplied the drawings, specifications, or other data, does not license the holder
or any other person or corporation, or convey any rights or permission to
manufacture, use, or sell any patented invention that may relate to them.

The Office of Public Affairs has reviewed this report, and it is releasable to the
National Technical Information Service, where it will be available to the general
public.

This report has been reviewed and is approved for publication.

JERRY T. BALL HERBERT H. BELL
Project Scientist Technical Advisor

CURTIS J. PAPKE, Colonel, USAF
Chief, Warfighter Training Research Division

Contract Number: F41624-97-D-5000
Contractor: Hughes Training Inc.

Copies of this report may be obtained from the Defense Technical Information Center (DTIC):

 Defense Technical Information Center
 8725 John J. Kingman Road, Suite 0944
 Ft. Belvoir, VA 22060-6218
 http://stinet.dtic.mil

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
 February 2004

2. REPORT TYPE
 Final

3. DATES COVERED (From - To)
March 2003 to February 2004
5a. CONTRACT NUMBER
F41624-97-D-5000
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

The Double R Theory of Language Comprehension

5c. PROGRAM ELEMENT NUMBER
62202F
5d. PROJECT NUMBER
4924
5e. TASK NUMBER
AM

6. AUTHOR(S)
Jerry T. Ball

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

Air Force Research Laboratory
Human Effectiveness Directorate
6030 South Kent Street
Mesa, AZ 85212-6061

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL; AFRL/HEA

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Air Force Research Laboratory
Human Effectiveness Directorate
Warfighter Training Research Division
6030 South Kent Street
Mesa AZ 85212-6061

AFRL-HE-AZ-TR-2003-0110
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Air Force Research Laboratory Technical Monitor: AFRL/HEAS, Dr. Jerry T. Ball, 480-988-6561 Ext. 457, DSN 474-6457

14. ABSTRACT
Double R Grammar is a linguistic theory of the grammatical encoding and integration of referential and relational meaning in English.
Double R Grammar is fundamentally a Cognitive Linguistic theory and the use of the term “grammar” encompasses both meaning and
structure as it does in Cognitive Grammar (also known as Cognitive Semantics). This technical report explicates the basic principles and
assumptions of Double R Grammar and compares Double R Grammar to Chomsky’s X-Bar Theory as well as Langacker’s Cognitive
Linguistic conception of nominals and clauses. Double R Process is a psycholinguistic theory of the processing of English text into Double
R Grammar based representations. Double R Process is a highly interactive, bottom-up, lexically driven theory of language processing that
is highly compatible with Kintsch’s Construction-Integration Theory, with which Double R Process is compared. Double R Theory is used
to refer generally to Double R Grammar and Double R Process. Double R Model is a computational psycholinguistic implementation of
Double R Theory using the Adaptive Control of Thought-Rational (ACT-R) cognitive architecture and modeling environment. Double R
Model is intended to validate the representation and processing commitments of Double R Theory and to form the basis for the
development of large-scale, functional language processing systems. After presenting a description of ACT-R, the current implementation
of Double R Model in ACT-R is explored via the description of the steps involved in the processing of a sample text.
15. SUBJECT TERMS
Language Comprehension; Natural Language Understanding; Language Processing; Linguistic Representation; Referential Meaning;
Relational Meaning; Semantics; Grammar; Double R Theory; Double R Grammar; Double R Process; Double R Model; X-Bar Theory;
Construction-Integration Theory; ACT-R; Cognitive Linguistics; Psycholinguistics; Cognitive Architecture; Cognitive Model
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Ms Liz Casey

a. REPORT
UNCLASSIFIED

b. ABSTRACT
UNCLASSIFIED

c. THIS PAGE
UNCLASSIFIED

UNLIMITED

80

19b. TELEPHONE NUMBER (include area
code)
480.988.6561 x-188 DSN 474-6188

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

ii

TABLE OF CONTENTS

Double R Grammar: The Linguistic Theory... 3

X-Bar Theory. ... 19
Langacker’s Conceptual Schema for Nominals and Clauses. 23

Double R Process: The Psycholinguistic Theory.. 29
Construction-Integration Theory. ... 39
The Adaptive Control of Thought – Rational. .. 44

Double R Model: The Computational Psycholinguistic Implementation......................... 50
Inheritance and limited pattern matching as an alternative to and improvement on

full unification... 51
Context accommodation as an alternative to and improvement on backtracking. ... 52
Feature Projection. .. 53
Use of a Context Chunk and a Chunk Stack... 53
Type Hierarchy ... 56
Default Rules. ... 57
Lexical and Functional Entries. .. 58
Productions ... 61
Processing Example. ... 63

The Significance of Double R Theory .. 70
References... 71

iii

LIST OF FIGURES

Figure 1 A situation referring expression with multiple complements............................ 11
Figure 2 An object referring expression with a post-head modifier 11
Figure 3 An object referring expression with a pre-head modifier.................................. 12
Figure 4 A complex predicate specifier ... 13
Figure 5 Adding grammatical features to the representation... 13
Figure 6 Overlapping grammatical features .. 14
Figure 7 Some Possible Schemas for the Verb Hit.. 16
Figure 8 A common, simplified variant of X-Bar Theory ... 19
Figure 9 Adding abstract conceptual features.. 26
Figure 10 More specific conceptual features ... 27
Figure 11 A specifier schema .. 32
Figure 12 A relation modifier schema ... 33
Figure 13 An object modifier schema.. 33
Figure 14 Integrating a relation modifier with an object modifier 33
Figure 15 Integrating a head with an object modifier.. 34
Figure 16 Integrating a specifier with a head... 34
Figure 17 Accommodating a second head noun.. 35
Figure 18 A relational head schema... 35
Figure 19 Elaborating the subject argument .. 36
Figure 20 Another relational head schema .. 36
Figure 21 Integrating two relational head schemas ... 37
Figure 22 An idiomatic schema ... 37
Figure 23 A fully elaborated situation referring expression .. 38
Figure 24 The ACT-R Architecture... 46

iv

Preface

The research was conducted at the Air Force Research Laboratory, Human Effectiveness
Directorate, Warfighter Training Research Division (AFRL/HEA) in Mesa, AZ. This
research is documented under Work Unit 4924AM01, Warfighter Training Research
Support, under contract F41624-97-D-5000 to Hughes Training, Inc. The Laboratory
Task Monitor was Dr. Herbert H. Bell, and the Laboratory Contract Monitor was Dr.
Winston Bennett, Jr.

I would like to thank Kevin Gluck and Wink Bennett of the Air Force Research
Laboratory for allowing me to continue this research.

1

THE DOUBLE R THEORY OF LANGUAGE COMPREHENSION

Introduction

Double R Grammar is a linguistic theory of the grammatical encoding and integration of
referential and relational meaning in English. Double R Grammar is fundamentally a
Cognitive Linguistic theory (Lakoff, 1987; Langacker, 1987, 1991, Talmy, 2003) and the
use of the term “grammar” encompasses both meaning and structure as it does in
Cognitive Grammar (also known as Cognitive Semantics). Double R Process is a
psycholinguistic theory of the processing of English text into Double R Grammar-based
representations. Double R Process is a highly interactive, bottom-up, lexically driven
theory of language processing that is highly compatible with Kintsch’s Construction-
Integration Theory (Kintsch, 1998). Double R Theory is used to refer generally to Double
R Grammar and Double R Process. Double R Model is a computational psycholinguistic
implementation of Double R Process using the Adaptive Control of Thought – Rational
(ACT-R) cognitive architecture and modeling environment (Anderson & LeBiere, 1998;
Anderson, Bothell, Byrne, & LeBiere, 2002). Double R Model is intended to validate the
representation and processing commitments of Double R Theory and to form the basis for
the development of large-scale, functional language processing systems.

Double R Theory improves on an earlier theory called Propositional Model (PM) (Ball
1991, 1992). PM was focused on the representation of relational meaning and on the
processing of text into propositional representations of relational meaning. The transition
from PM to Double R Theory is based on the realization that referential meaning is a key
dimension of meaning—largely implicit in PM—that should be made explicit and that
should be accorded equal importance with relational meaning.

This report begins with a description of Double R Grammar and focuses on the
grammatical encoding of referential and relational meaning. It continues with a
comparison of Double R Grammar to X-Bar Theory (Chomsky, 1970; Jackendoff, 1977).
It is argued that Double R Grammar can provide a meaningful basis for the important
grammatical generalization captured by X-Bar Theory, and in so doing avoid some of the
pitfalls that have beset various versions of X-Bar Theory. This section continues with an
overview of Langacker’s Cognitive Linguistic description of the conceptual content of
nominals and clauses (Langacker, 1991). The relationship between Double R Grammar
and Langacker’s conceptual schema for nominals and clauses is explored in some detail.

The report continues with a description of Double R Process, highlighting the interactive,
bottom-up, and lexically driven nature of the language processing system and its reliance
on referential and relational schemas to determine the structure of texts being processed.
The activation, selection, and integration phases of Double R Process are discussed.
Double R Process is then compared to Kintsch’s Construction-Integration Theory
(Kintsch, 1998) and the two are shown to be highly compatible. The section concludes
with a description of the ACT-R architecture (Anderson & LeBiere, 1998; Anderson et
al., 2002) and a discussion of the appropriateness of using the ACT-R architecture and

2

cognitive modeling environment for the development of language comprehension
systems.

The third section of the report discusses the Double R Model implementation of the
theory using the ACT-R 5.0 cognitive modeling environment. The range of coverage of
the model is explored. Examples of particular techniques used in the model (e.g., the
creation of default rules and the use of inheritance) are presented. Some suggested
modifications to ACT-R which may be needed to support a more complete
implementation of Double R Model are discussed.

The report concludes with a consideration of the contribution of Double R Theory to the
study of language comprehension. It is argued that the integrated representation and
processing system emerging out of this research and the implementation of a testable
model represent a significant achievement.

Double R Theory was originally called ЯR Theory. The ЯR symbol was an integration of
the Cyrillic Я and the Roman R. It symbolized the integration of referential and relational
meaning which is the cornerstone of Double R Theory. Unfortunately, negative feedback
and formatting problems led to the abandonment of this icon to symbolize the theory.

For additional details on Double R Theory, consult the Double R Theory website at
www.DoubleRTheory.com.

3

Double R Grammar: The Linguistic Theory

Double R Grammar is fundamentally a Cognitive Linguistic theory (Langacker, 1987,
1991; Lakoff, 1988; Talmy, 2003). Grammar encodes meaning (Langacker, 1987, 1991).
All grammatical elements have a semantic basis, including parts of speech, grammatical
markers, phrases and clauses (Langacker, 1987, 1991; Taylor, 1992). Our understanding
of language is embodied and based on experience in the world (Lakoff, 1987; Lakoff &
Johnson, 1980). Categorization is a key element of linguistic knowledge, and categories
are seldom absolute—exhibiting, instead, effects of prototypicality, basic level categories
(Rosch, 1978), family resemblance (Wittgenstein, 1953), fuzzy boundaries, radial
structure, and the like (Lakoff, 1987; Taylor, 1992). Our linguistic capabilities derive
from basic cognitive capabilities—there is no autonomous syntactic component
(Chomsky, 1957, 1965; Frazier & Fodor, 1978) separate from the rest of cognition.
Knowledge of language is for the most part learned and not innate (Langacker, 1987;
Tomasello, 1998). Abstract linguistic categories (e.g., noun, verb, nominal, clause) are
learned on the basis of experience with multiple instances which are members of these
categories, with the categories being abstracted and generalized from experience. Also
learned are schemas which abstract away from the relationships between linguistic
categories. Over the course of a lifetime, humans acquire a large stock of schemas at
multiple levels of abstraction and generalization representing knowledge of language and
supporting language comprehension. Whereas knowledge of individual lexical items is
the basis of lexical semantics, schematic knowledge of the associations between lexical
items constitutes what might be called grammatical semantics, although schemas are, for
the most part, associated with specific lexical items (Nirenburg & Raskin, 1996, p.11).

Grammar is the symbolization of meaning. Discussion of grammar goes hand in hand
with discussion of the meaningful consequences of grammatical variation. The linear
stream of English text encodes multiple dimensions of meaning. The encoding of
multiple dimensions of meaning in a single linear dimension results in trade-offs in
encoding across dimensions and variation within a given dimension across different
grammatical contexts.

Two key dimensions of meaning that get grammatically encoded are referential meaning
and relational meaning. The grammatical encoding of referential and relational meaning
is described in terms of the four basic functional categories: specifier, head, modifier, and
complement. These terms are borrowed from X-Bar Theory (Chomsky, 1970), but are
given a semantic basis. The functional category of complement is further classified in
terms of the functional roles that complements fulfill within a clause: subject, (direct)
object, indirect object, and complement (e.g., clausal complement or prepositional phrase
complement). Double R Grammar gives these functional categories definitions based on
their use in representing referential and relational meaning. A specifier is a word or
expression (or morphological marker) that establishes the referential type of the
expression it specifies. The term specifier as used in Double R Grammar is borrowed

4

from Chomsky (1970) and is compatible with his suggestion that determiners and
auxiliaries are typical specifiers (ibid, p. 210), a position he later rejected (e.g., Chomsky,
1995). A head is the semantically most significant element of an expression and
determines the relational type—where relational type is used generally to encompass
non-relational objects—of that expression (called a Type Specification in Langacker,
1991). A modifier is a linguistic element that provides supporting information about the
head it modifies. A modifier may constrain the relational type of the head, perhaps further
classifying that type into a subtype, but the modified expression retains the overall type
of the head. A complement is a referring expression that functions as an argument to a
relational element. Clauses are headed by relational elements and the complements which
occur in a clause are the arguments of the relational head.

The joint consideration of referential and relational meaning leads to integrated
representations of referential and relational meaning of two basic types: situation
referring expressions which typically correspond to clauses and object referring
expressions which typically correspond to nominals. Predicate referring expressions are
situation referring expressions without their associated complements, however, predicate
referring expressions seldom occur in isolation without their complements.

A predicate referring expression is headed by a word or expression describing a relation.
The relational head is typically a verb, adjective, or preposition and occasionally an
adverb—the four basic relational parts of speech (Langacker, 1991, p.5). A specifier
providing information about tense and/or modality (and negation) combines with a
relational head to form a predicate referring expression. The predicate referring
expression takes on the functional role of a predicate within a situation referring
expression. The predicate typically combines with one or more complements (or
arguments) in forming a situation referring expression. The terms complement and
argument are used synonymously in Double R Grammar, and they are referring
expressions. Schemas are associated with relational words and expressions and reflect the
number, typical position, and role of the complements of the relational element. For
example, the verb “hit” is associated with the schema |subj hit obj| reflecting the
occurrence of a subject complement preceding the verb and an object complement
following the verb. Within this schema, hit is itself a schema for the possible
instantiations of a predicate headed by the verb “hit” (e.g., “hit,” “is hitting,” “could have
hit,” “did not hit”) and subj and obj are complement schemas. Non-relational words and
expressions do not typically evoke such schemas, although the possibility of schemas
containing unexpressed relationships is not precluded (e.g., a |noun noun| schema). In
addition to relational schemas, referential schemas like |specifier head| reflect the
referential structure of the referring expressions in a text.

An object referring expression is headed by a word or expression describing a type of
object, or by a word or expression describing a type of relation or situation that is viewed
objectively. A specifier combines with the head to form an object referring expression,
although certain types of heads (e.g., pronoun, proper noun, plural common noun, mass
noun) are inherently or morphologically specified and do not require a separate specifier.
Neither the head of an object referring expression nor the object referring expression

5

itself takes any complements (since the head is viewed as an object and not a relation).
However, both the head and the overall object referring expression may combine with
one or more modifiers. Further, it is possible for a relational expression containing
complements to be objectified and treated as the head of an object referring expression,
giving the appearance that the head takes complements. For example, in the expression
“your giving money to strangers” (a poss -ing construction), the entire sub-expression
“giving money to strangers” (e.g., Pullum, 1991) is objectified and functions as the head.
That is, the complements “money” and “to strangers” combine with “giving” before the
expression as a whole is objectified. The typical object referring expression is headed by
a noun, specified by a determiner, and has the form of a noun phrase. However, the head
of an object referring expression need not be a noun and the object specifying function
need not be provided by a determiner.

In addition to situation referring expressions, predicate referring expressions, and object
referring expressions, there is a collection of less basic types of referring expressions:
location referring expression, direction referring expression, time referring expression,
path referring expression, manner referring expression, reason referring expression, and
measure referring expression (and perhaps a few others). These less basic referring
expressions typically function as modifiers, although they may occasionally function as
complements (e.g., “on the table” in “he put the ball on the table”).

The full range of referring expressions corresponds to the wh-words in English as
follows:

Who (human) object referring expression
What object referring expression; predicate referring

expression; situation referring expression
Where location referring expression; direction referring

expression; path referring expression
When time referring expression
Why reason referring expression
How manner referring expression
How much/many measure referring expression

Jackendoff (1983, 2002) presents a similar ontology of conceptual categories (based in
part on the wh-words in English, ibid, 1983, p. 53) without committing to their having a
referential basis, although his referentiality principle that “unless there is a linguistic
marking to the contrary, all phrases that express conceptual constituents are referential”
(1983, p. 70) leads to a similar result. However, Double R Grammar takes a different
position in arguing that specifiers mark referentiality, but allows that some words and
expressions may be inherently or morphologically specified (e.g., wh-words, pronouns,
proper nouns, plural common nouns, mass nouns, deictic words and expressions, present
tense and past tense verbs).

The relationship between a specifier and a head is primarily referential in nature with the
specifier dominating the head in determining the referential status of the overall

6

expression. For example, in the expression “the kick,” the specifier “the” determines the
expression to be an object referring expression even though the head “kick” describes a
type of action. Specifiers are classified in terms of the types of referring expressions they
specify. The two basic types of specifiers are predicate specifiers which specify predicate
referring expressions and object specifiers which specify object referring expressions.
Clausal complements may be specified by a complementizer (e.g., “that” in “I believe
that he likes you”), especially when the complementizer indicates that the clausal
complement is being viewed objectively (i.e., an objectified situation referring
expression). The less basic types of referring expressions are typically specified by
prepositions or adverbs which also function as the heads of such expressions (e.g., “on”
in “on the table”).

The relationship between a head and a modifier is primarily relational (where relational
again encompasses non-relational objects) with the head determining the relational type
of the overall expression and the modifier constraining that relational type. For example,
in the expression “red ball,” the modifier “red” combines with the head “ball” to
constrain the relational type of “ball,” but the overall expression still describes a type of
ball. The term endocentric (Bloomfield, 1933) is used to describe expressions in which
the head of the expression determines the type of the expression as a whole. The head-
modifier relationship preserves endocentricity.

Whereas the head-modifier relationship preserves endocentricity, the specifier-head
relationship need not. For example, in the expression “the running (of the bulls)” the verb
participle “running” functions as the head of an object referring expression despite its
verbal status. It is the specifier “the” which determines the referential type of the overall
expression and not the head “running.” In general, referential type is more closely aligned
with the notion of syntactic type (e.g., noun phrase, verb phrase) than is relational type—
at least where they differ—and the specifier-head relationship is exocentric in this case.

To retain the notion of endocentricity for expressions like “the running (of the bulls),”
“running” would need to be reanalyzed as a noun in this expression and nouns and noun
phrases (or nominals) would have to be considered the same (syntactic) type (as in X-Bar
Theory), but Ball (2003 manuscript in preparation a) argues that such an approach is
circular since words of most (if not all) parts of speech and many different types of
expression may function as the head of a noun phrase and would need to be classified as
nouns—and the only basis for doing so is because they occur as the head of a noun
phrase. Consider:

 The running (present participle) of the bulls
 The injured (past participle) were taken to hospital
 The sad (adjective) are in need of cheering up
 The cheering up (verb participle + particle) of the sad
 The buy out (verb + particle) of the corporation

The up and down (conjoined prepositions) of the elevator
The Fillmores (proper noun)

 The ayes (adverb) have it.

7

The man took a walk (verb) around the park (Dixon, 1991)

In some of these examples (e.g., “ayes,” “Fillmores”), the head of the object referring
expression is pluralized and it may appear that these words are indeed nouns since the
ability to pluralize is often cited as a feature of nouns. However, if pluralization is a
feature of the head of an object referring expression and not of nouns per se, then
pluralization cannot be used as a definitive test of nounhood. The fact that nouns are the
prototypical heads of object referring expressions explains their ability to pluralize, but
does not preclude the pluralization of words of other parts of speech when heading object
referring expressions. The head of an object referring expression is viewed objectively
whether it is a noun, verb, adjective, adverb, or preposition. This objective viewpoint
allows the head to be pluralized when multiple instances of the relation expressed by a
verb, adjective, adverb, or preposition are conceptualized.

Besides the requirement to treat all heads of noun phrases as nouns, endocentricity
requires that a noun phrase be the same type as the head noun it contains. But there are
clear distributional differences between noun phrases and nouns which suggest that they
are not the same grammatical type. Singular count nouns cannot substitute for full-
fledged nominals (e.g., “The book is long” vs. “Book is long”) because they lack the
specification that creates a full-fledged nominal (i.e., an object referring expression) from
a head noun. The possessive takes a noun, not a full nominal (e.g., John’s book vs. John’s
the book) because the possessive provides the specification that creates a full-fledged
nominal and this conflicts with the function of the determiner “the.”

The notion of head used in Double R Grammar is more closely aligned with the notion of
stem in morphology than is true of most other grammatical approaches. It is the
distinction between the head-modifier and specifier-head relationship which makes this
closer alignment possible. The head or stem is the semantically most significant element
that determines the semantic profile of the composite expression. In a word like
“blackbird,” “bird” is the stem which determines the semantic type of the composite
lexical item with “black” constraining that semantic type. In this example of derivational
morphology, the correspondence is to the modifier-head relationship and “blackbird” and
“bird” are both nouns. On the other hand, the word “easily” combines the adjective
“easy” with the adverb marker “-ly” with “easy” determining the semantic type of the
word, but with “-ly” determining the part of the speech of “easily.” In this latter case of
derivational morphology, the correspondence is to the specifier-head relationship. In
essence, there are two basic mechanisms of combination, one which retains
endocentricity (i.e., the head or stem determines the type of the overall composite), and
one which does not (i.e., the specifier or affix determines the type). Syntactic approaches
which adopt a strong notion of endocentricity (e.g., X-Bar Theory, Dependency
Grammar, HPSG) are unable to align themselves with morphology where exocentricity is
a commonly attested pattern (e.g., the creation of adverbs from adjectives via the addition
of “-ly”; the creation of nouns from verbs via the addition of “-er”).

The relationship between a head and its complements is primarily relational in nature.
Only relational heads take complements and those complements are full referring

8

expressions. The relational nature of a word or expression is a linguistic
conventionalization. That is, the number and type of complements that a relational word
or expression takes is a conventionalization of the situation that the word or expression is
used to describe. That conventionalization provides a particular perspective on the
situation (Fillmore, 1977) that may vary from language to language (and within a
language), but is nonetheless meaningfully motivated. Such conventionalization may be
driven by psychological limits on the number of separate chunks of information that can
be separately entertained at one time (i.e., short-term working memory limitations).

The relationship between a specifier and a relational head and between a relational head
and its complement(s) is largely, though not entirely, orthogonal. The specifier-head
relationship is primarily referential, whereas, the head-complement relationship is
primarily relational. Grammatically, there is often a closer affinity between a specifier
and a relational head than there is between a relational head and its complements. For
example, a predicate specifier combines with a relational head to form a predicate
referring expression and a predicate referring expression combines with its complements
to form a situation referring expression. The closer affinity of a predicate specifier and
relational head is suggested by the fact that the infinitive marker “to” which specifies a
non-finite predicate referring expression, also sanctions the non-occurrence of the subject
complement as in the infinitive phrase “to go” in the clause “I want to go” (an example of
the interdependence of referential and relational meaning). Although, the infinitive
marker sanctions the non-occurrence of the subject complement, that complement is
typically retrievable in the context of use of the expression. On the other hand, in the
expression “the book is on the table” the relationship between the predicate specifier “is”
and the relational head “on” may be subordinated to the relationship between “on” and its
object complement “the table.” If so, “on” first combines with “the table” to form a
higher order relation before combining with the predicate specifier “is” (and the subject
complement).

Complements can be contrasted with modifiers. Complements are sanctioned by the
relational elements they combine with to form composite expressions and they are
typically obligatory elements of the expressions they occur in—although a relational
element may license alternative schemas in which the complement does not occur.
Modifiers are not sanctioned by a relational element and are always optional.
Complements are referring expressions. Modifiers may or may not be referring
expressions. The typical complement is a non-relational object referring expression (e.g.,
nominal). The typical modifier is a relational expression (e.g., attributive adjective,
prepositional phrase, or adverb). A complement profiles itself, although the profile of the
complement does not project to the composite expression. It is the relational head with
which the complement combines that projects the profile and type of the composite
expression. A modifier profiles the head it modifies and does not project the type of the
composite expression (although it may constrain that type into a subtype). Thus, neither
a complement nor a modifier projects the type of the composite expression. Although the
distinction between a prototypical complement and a prototypical modifier is clear cut,
the distinction is somewhat fuzzy at the boundaries. The expression “on the table”
functions as a complement in “he put the ball on the table” and a modifier in “the ball on

9

the table.” The complement status of “on the table” in the first expression stems from the
fact that the verb “put” sanctions a locative complement, whereas the nominal “the ball”
does not. In the expression “he gave Mary the ball,” “Mary” is a complement of “gave,”
whereas in “he gave the ball to Mary,” “to Mary” may or may not be a complement. The
treatment of “to Mary” depends on which schema is used to construct a representation.
Assuming a schema for “gave” like |subj give obj ppcomp| which includes a
(prepositional phrase) complement (functioning as a direction referring expression)
following the object, “to Mary” can be instantiated as that complement. However, there
may also be a more specialized schema like |subj give obj to obj| which explicitly
represents “to” and only abstracts from the object of “to”. In this schema, “to”
participates as part of the predicate “give…to” similar to the way verb particles
contribute to predicates, but “to” also sanctions an additional object (unlike verb
particles). This more specialized schema is likely to be preferred over the more abstract
schema which treats “to Mary” as a complement. Finally, in the expression “he threw the
ball to Mary,” “to Mary” is likely functioning as a directional modifier of the predicate
“threw” (assuming the lack of a schema for “throw” which incorporate a prepositional
phrase complement like “to Mary” or a more specialized schema like |subj throw obj to
obj|).

The subject complement is the only complement of an intransitive predicate and the first
complement of a transitive predicate. The direct object is the second complement of a
transitive predicate or relational modifier (e.g., prepositional phrase modifier).
Langacker (1991) defines the subject as the primary figure or trajector in a profiled
relation and the direct object as the secondary figure or landmark. The trajector is the
participant in a relation from which the relation “flows” and this flow is towards the
landmark. That is, the trajector is viewed as the source of the relation and the landmark is
viewed as the target of the relation. Two additional complements are possible, the
indirect object and an additional complement (i.e., in addition to the direct and indirect
object). The indirect object occurs with relations like “give” as is the case for “Mary” in
“he gave Mary the book.” Langacker treats the indirect object as the secondary figure or
primary landmark, demoting the direct object in such expressions to the status of
secondary landmark. In double object constructions, the relation flows from the trajector
thru the primary landmark (i.e., indirect object) to the secondary landmark (i.e., direct
object). Thus, “Mary” has the status of primary landmark in the example above and “to
Mary” has the status of secondary landmark in “he gave the book to Mary” with “the
book” being the primary landmark. Clausal complements can function as trajectors (e.g.,
“that he likes you” in “that he like you is nice”), primary landmarks (e.g., “he likes you”
in “I believe he likes you”), secondary landmarks (e.g., “he likes you” in “he told me he
likes you”) and even tertiary landmarks (e.g., “he likes you” in “I bet you $50 he likes
you”). In the last example, the clausal complement constitutes a distinct functional
category.

Many relational expressions participate in schemas with a reduced number of
complements as in the expression “he bet me” which is missing the second object and
clausal complement. In such schemas, the participants, which are explicitly encoded, are
profiled to the exclusion of the missing participants. It is even possible for all participants

10

in a relation to be excluded, in which case only the relation itself is profiled. This is what
happens in object referring expressions with relational heads where all complements are
left unexpressed as in “the bet was late” (where “bet” refers to the act of betting and not
the amount of the bet).

The basic parts of speech in English are noun, verb, adjective, adverb, and preposition.
Of these all are relational except for nouns (Langacker, 1987, 1991 p. 5). Nouns
prototypically function as the heads of object referring expressions, however, they may
also function as modifiers. Verbs prototypically function as the heads of predicate
referring expressions, however, they may also function as the heads of object referring
expressions in which case they are viewed objectively. It is interesting to note that, of the
relational parts of speech, it is action verbs which most readily function as heads of object
referring expressions. The short duration of action verbs makes them highly suitable for
objectification as in “the kick,” “the punch,” “the throw,” etc., even though action verbs
are the most typical verbs. Verbs (especially verb participles) may also function as
modifiers in object referring expressions. Adjectives prototypically function as the heads
of predicate referring expressions (i.e., predicate adjectives) and also as modifiers in
object referring expressions (i.e., attributive adjectives). Adverbs prototypically function
as modifiers of relations and situations. Prepositions in combination with their objects
typically function as modifiers of object referring expressions, modifiers of the heads of
predicate referring expressions (i.e., predicate modification) and modifiers of situation
referring expressions (i.e., situational modification). Prepositions may also function
without an object (i.e., verb particles) as modifiers of the heads of predicate referring
expressions.

As an example of a Double R Grammar based representation, consider the representation
of the expression “he gave me the book.” In Figure 1 below, the pronouns “he” and “me”
are inherently specified object referring expressions that function as the subject and
indirect object, respectively (ref-head = referring head). The determiner “the” provides
the specification for the object referring expression “the book” which functions as the
(direct) object. The past tense verb “gave” is a morphologically specified (i.e., past tense)
predicate referring expression that functions as the main predicate (pred-spec = predicate
specifier). In this example, the integration of referential and relational meaning is
relatively straightforward with the object referring expressions “he”, “me” and “the
book” corresponding to the arguments of the predicate “gave.”

11

Figure 1 A situation referring expression with multiple complements

In general, the integration of referential and relational meaning will not be so
straightforward and trade-offs in the encoding will result. For example, consider the
expression “the book on the table” in Figure 2 below.

Figure 2 An object referring expression with a post-head modifier

In this representation, the relational meaning of “on” with respect to the complement “the
book” is only implicit in the modifying function of “on the table” (obj-modifier = object
modifier). It is also of interest to note that the preposition “on” functions to both specify
a location referring expression and to head that expression (loc-spec = location specifier).
In general, words that function as specifiers come from closed-class parts of speech like
determiner, auxiliary verb, preposition, and pronoun and tend to be short, frequently
occurring words. That specifiers tend to be short, frequently occurring words from
closed-class parts of speech is a reflection of their importance for identifying grammatical
structure. Their membership in closed-class parts of speech makes them easier to learn.
Their small size makes them quicker to perceive (once they are learned). Gomez and

12

Gerken (2000) suggest that words from closed class parts of speech (e.g., “the”) and
morphological markers (e.g., the plural marker “-s”) provide perceptual cues that, once
learned, support the learning of open class categories like noun and verb. Specifiers make
the complexity of adult grammatical competence possible. Closed-class parts of speech
exist because there are only highly restrictive processes for creating new members of
these classes. Instead, they are the basis (along with morphological markers) for the
productive processes that create new members of the open-class parts of speech.

Note also that the prepositional phrase “on the table” modifies the object referring
expression “the book” and not just the head of that expression “book.” This
representational commitment is motivated by the fact that relations take referring
expressions as complements with “the book” functioning as an implicit complement of
“on.” Thus, “the book” is the head with respect to the modifier “on the table,” but it is a
complement with respect to the relation “on.” Typically, post-modification in object
referring expressions is of an object referring expression and not just a head, whereas pre-
modification is of the head as in “the very old man” which is represented in Figure 3.

Figure 3 An object referring expression with a pre-head modifier

Note that the adverb “very” functions as a relation modifier modifying the relation “old”
(with “old” functioning as an object modifier). “Very old” in turn modifies the head
“man.” In pre-modification, the modifier-head relation dominates and “man” is not a
complement of “old” (since “man” is not, in and of itself, a referring expression).

The specifier function need not be filled by a single lexical item. Predicate specification
may include a modal auxiliary, up to three other auxiliaries, a negative, and even an
embedded adverbial modifier (e.g., “clearly” in “he is clearly not happy”). The specifier
function may also be morphologically based (e.g., the past-tense marker). Consider the
expression “the boy could not have been hitting the ball” which is represented in Figure
4.

13

Figure 4 A complex predicate specifier

In this example, the predicate specifier consists of the modal auxiliary “could,” the
negative “not,” and the auxiliary verbs “have” and “been.” The predicate referring
expression refers to a possibly negative past state of hitting and combines with the object
referring expressions “the boy” and “the ball” to form a situation referring expression.

Object specification may also consist of more than one lexical item or morphological
marker. Consider the expression “the first two books.” Using grammatical features
(where grammatical is understood as being meaningful) to represent different types of
object specification, this can be represented by Figure 5.

Figure 5 Adding grammatical features to the representation

Note that the overall object referring expression is definite despite the indefinite plural
feature on “books” and the indefinite specification of two instances provided by “two.”
“Two” combines with “books” and the combination may function as a fully specified
(indefinite) object referring expression, although in the example further specification
occurs. “First” could combine with “two books” forming “first two books,” but the result
is not a fully specified object referring expression unlike “two books” and this
combination is “dispreferred” for this reason (i.e., it is assumed that a specifier does not
combine with a object referring expression to form an expression that cannot also
function as an object referring expression). Instead, “the” combines with “first” to form a
combined definite object specifier, which combines with “two books” to form a definite

14

object referring expression. An alternative representation could have “the first” combine
with “two” to form a definite object specifier “the first two” which then combines with
“books” to form an object referring expression. This alternative representation could even
be preferred with appropriate emphasis (e.g., “the first two…books”). The specifier and
the head can be viewed as providing two poles (i.e., a referential pole and a relational
pole) to which other lexical items are attracted. Lexical items of particular parts of speech
are preferentially attracted to one pole or the other (based on their meaning), although
such preferences can be overridden with appropriate emphasis or context. That ordinal
and cardinal numbers are preferentially specifiers is suggested by the fact that they occur
before modifiers (e.g., “the first two blue books”). In addition, they contribute to the
determination of the referent of the overall expression. However, an expression like “the
blue two books” is not all that awkward, and in such a case “two” may be functioning as
a modifier (or blue may be modifying the fully specified object referring expression “two
books”). Multiple specification is presumed to be the norm in Double R Grammar, and
modification (and further specification) may occur external to specification, subject to
certain limitations. For example, a definite object referring expression cannot typically be
further specified by an indefinite specifier and in most cases addition of a second definite
object specifier is redundant (or would be inconsistent) (e.g., “these all books”). It is for
this reason that further specification of definite object referring expressions is extremely
limited, although not entirely non-existent (e.g., “all” in “all these books”). Despite the
possibility of multiple specification, the distinction between a specified head that can
function as a referring expression and an unspecified head that cannot, is still meaningful
and important.

Cardinal and ordinal numbers are subtypes of quantifier. Quantifiers, more generally, are
considered to be part of the specification in object referring expressions. Consider the
expression “many books” which is represented in Figure 6.

Figure 6 Overlapping grammatical features

The boundary between specification and modification is somewhat fuzzy. Determiners
and quantifiers typically function as object specifiers. Adjectives and verbal participles
typically function as object modifiers. Modals, auxiliaries, and negatives typically
function as predicate specifiers. Adverbs typically function as predicate modifiers. The
requirement for “do support” in negation (e.g., “he did not go”) and the contracted forms
of negation (e.g., “couldn’t,” “shouldn’t,” “won’t”) suggest the preferred treatment of the
negative as part of the predicate specification. However, consider the expression “he
could not go” which is ambiguous between a preferred reading in which “not” combines

15

with “could” to form a predicate specifier (i.e., the preferred or unmarked reading) and a
dispreferred reading in which “not” functions as a predicate modifier modifying “go” as
in “he could NOT GO” (i.e., “he could [decide] not [to] go”) with “could” providing the
predicate specification and “not go” functioning as the modified head. Further,
quantifiers may function as heads of object referring expressions as well as object
specifiers as is the case for “some” in “some of the books.” This combined object
specifier/head functionality is typical of pronouns, and quantifiers functioning in this
manner are typically considered to be pronouns (although an alternative is to view them
as quantifiers functioning as full object referring expressions). Likewise, auxiliary verbs
may function as the head of predicate referring expressions as in “he did it” in which case
they combine the predicate specifier/relational head functionality just like other present
and past tense verbs. Or consider “he didn’t do it” in which the first occurrence of do
(i.e., “did”) is functioning as a predicate specifier and the second instance is functioning
as a relational head.

The encoding of referential meaning is a key element of Double R Grammar. Of course,
referring expressions must ultimately refer to something. Reference in Double R
Grammar is to objects, relations and situations in a situation model (adapting Kintsch’s,
1998, terminology) which is a mental representation of the real and imagined world. To
the extent that the evolving situation model corresponds to the broader (and less
dynamic) mental model of the real world that humans maintain, referring expressions
refer to objects and situations in the real world. However, referring expressions may refer
to objects or situations in the situation model which do not correspond to objects or
situations in the broader mental model of the real world. This makes it possible to treat
situation referring expressions like “the boy could not have been hitting the ball” and
object referring expressions like “no one” in “no one is here” as referential. In the
situation model corresponding to “the boy could not have been hitting the ball,” a
possibly negative state of hitting involving two objects is referred to which does not
correspond to any situation in the broader mental model of the real world, and in “no one
is here,” a person and a location are referred to, however, the person referred to in the
situation model is understood not to correspond to anyone in the broader mental model of
the real world (although the location may refer to a real-world location). The creation of a
situation model corresponding to a text and its relationship to the broader mental model
of the real world is an active area of research (Ball, 2003 manuscript in preparation b).
Key influences on that research include Johnson-Laird (1983), Kintsch (1998), Langacker
(1987, 1991), and Jackendoff (1983, 2002). Logical and formal approaches to the
handling of reference (and quantification) are largely rejected, although considerable
insight may be gleaned from that research (e.g., Barwise & Perry, 1983; Kamp & Reyle,
1993; Thomason & Stalnaker, 1973).

Double R Grammar makes use of schemas (using Langacker’s terminology) for the
representation of knowledge of language. In Double R Grammar there is an abstract
schema of the form |subj pred obj| (subj is short for object referring expression filling
the subject role, pred is short for predicate referring expression filling the predicate role,
and obj is short for object referring expression filling the direct object role), which
represents knowledge about the linear encoding, and number and type of arguments that

16

are associated with transitive predicates. There is also likely to be a more concrete
schema of the form |subj hit obj|, reflecting specific knowledge about the transitive verb
“hit.” And even more concrete schemas like |subj hit the nail on the head| are possible.
Thus, Double R Grammar assumes the existence of schemas at multiple levels of
abstraction and generalization. Figure 7 lists some possible schemas for the verb “hit.”

Figure 7 Possible Schemas for the Verb Hit

Of interest to note is that a schema which contains specific lexical items might be said to
be part of the lexicon (assuming the schema is addressable via the lexical item it
contains), whereas a schema which does not contain any specific lexical item might be
said to be part of the grammar (Jackendoff, 2002, makes a similar point). But if abstract
schemas like |subj pred obj| are directly associated with specific lexical items, this
distinction loses its force.

Although all these schemas (and more) are possible, Double R Grammar assumes that
more concrete schemas like |subj is hitting the books| take precedence over more abstract
schemas like |subj pred obj| in language comprehension since they will be more strongly
activated by matching inputs as when a sentence like “he is hitting the books” is
processed. Abstract schemas take on a more important role when processing novel
expressions not previously experienced and unknown words. Double R Grammar also
assumes that schemas containing functional role categories like subject and object are
preferred over schemas containing syntactic categories like NP and VP. This follows
from Double R Grammar’s assumption that functional categories like subject and object
are meaning based and not purely syntactic (although they are grammatically marked)
and from the priority of semantics assumption and the lack of a distinct syntactic
component. Finally, Double R Grammar assumes that schemas containing functional

|subj is hitting the books|
|subj hit the nail on the head|
|I hit obj|
|I hit the head|
|he is hitting obj|
|subj likes to hit obj|

|NP hit NP|

|NP verb NP|

|subj hit obj|

|hitter hit hittee|

|agent hit patient|

|subj verb obj| |agent verb patient|

|subj hit on obj|
|subj hit obj on obj|
|subj hit obj over obj|
|subj hit obj to obj|

17

categories which are grammatically or morphologically marked (e.g., hitter, hittee,
subject and object) will be more easily abstracted from and matched to inputs then
schemas containing categories which are not grammatically marked (e.g., agent and
patient).

The existence of schemas at multiple levels of abstraction is a generalization of the
distinction between semantic and episodic memory, with semantic memory being
composed of schemas which have been abstracted away from specific episodes and
entities, and episodic memory containing schemas corresponding to specific events and
entities. Further, multiple level schemas are consistent with the distinction between
prototypes, exemplars and specific instances. Prototypes correspond to the most typical
(and central) schemas of a given type and are abstracted from previous experience (and
may be generalized), exemplars cover a wider range of possible schemas and are more
closely tied to the actual experience (and less likely to be generalized), and specific
instances are directly tied to experience. Finally, multiple-level schemas can represent the
distinction between types and tokens, with types corresponding to abstract schemas that
are generalized from past experience and tokens corresponding to specific schemas that
are directly tied to experience. Langacker (1991) argues that tokens are essentially just
types that happen to refer to specific instances. That is, from the type-subtype perspective
(i.e., dimension of meaning), tokens are subtypes of a higher level type, although they
differ from other types in also instantiating an instance of the type in the domain of
instantiation (i.e., another dimension of meaning). His unification of types and tokens
simplifies the (partially) compositional semantics he espouses, allowing for the creation
of a uniform-type hierarchy from the most general concepts (e.g., thing or process) to
specific instances (e.g., “Richard the Lionheart,” “World War II”). Jackendoff (1983)
attempts an alternative unification of types and tokens in arguing that they are
grammatically realized via the same grammatical forms (e.g., in “a cat is a mammal”, “a
cat” refers to a type and in “a cat sat on the mat”, “a cat” refers to an indefinite token),
and, therefore, not grammatically distinguished. Instead, tokens and types are only
distinguished in conceptual structure. Double R Grammar maintains a distinction
between types and tokens, arguing that the specifier functions to establish a token (or
instance) given a head of a particular type. In Double R Grammar, both uses of “a cat”
above represent linguistic tokens and not types, and only linguistic tokens function as
referring expressions. However, in Double R Grammar, a referring expression may refer
to a nonlinguistic type (a possibility that Jackendoff argues against) as well as a
nonlinguistic token. That is, there are nonlinguistic types and tokens (as well as
exemplars and possibly prototypes) in the situation model to which referring expressions
refer, as well as linguistic types and tokens. Where Langacker and Jackendoff have a
single level of conceptual (i.e., Jackendoff’s conceptual structures) or semantic (i.e.,
Langacker’s semantic pole) representation, Double R Grammar has linguistic
representations of meaning that are grounded in nonlinguistic representations of the
referents of referring expressions.

In terms of how we acquire schemas, Double R Grammar agrees with Langacker (1987).
An individual is exposed to specific instances of language use and initially acquires
rather specific schemas corresponding to those instances. Based on repeated exposure to

18

similar instances with minor differences he or she is able to abstract away from the
differences, forming abstract schemas which capture the similarities and abstract away
from the differences. Abstraction then provides the mechanism for producing or
recognizing new instances to which the individual has not been exposed. For example,
the abstract schema |subj hit obj|, in which the specific linguistic form of the subject and
object is unspecified, could be used in the production or recognition of an infinite number
of situation referring expressions (subject to practical limitations) and Double R
Grammar may be viewed as a Generative Semantic theory. Thus, schemas allow for the
kind of productivity that is apparent in natural language. Under this scenario, abstract
schemas are learned and are not innate, and it is not a question of having abstract
schemas available innately and then specifying parameters for specific languages
(Berwick & Weinberg, 1984; Chomsky, 1981, 1982). In an interesting article entitled
Language Acquisition: Schemas Replace Universal Grammar, Arbib and Hill (1988) put
forward a similar position. Further, it does not seem reasonable from a psycholinguistic
perspective to suggest that once an abstract schema has been learned, the more specific
schemas on which it was based become unavailable for use. Nonetheless, numerous
researchers have made proposals which would have just this effect. For example,
Hudson’s (1984, p. 29) Linguist’s Economy Principle states that a linguist should

Never record any property more than once in relation to any entity. That
is, once you (the linguist) have decided there is a generalization to be
made, you make it in relation to the relevant general category…and then
suppress any mention of it in more specific entries which can inherit the
information from the general one.

Similarly, in a model of semantic memory, Collins and Quillian’s (1969) Cognitive
Economy Principle assumes that properties of objects are associated directly with the
most general category to which they apply and only indirectly with the more specific
categories. The psychological validity of this principle in models of semantic memory
has already been challenged by Conrad (1972) and Collins and Loftus (1975). As well,
the focus on generalization and universality in grammar has led to the creation of very
general linguistic categories and to the relegation of idiosyncratic details to the lexicon.
However, the more general the categories become, the greater the amount of idiosyncratic
detail which must be relegated to the lexicon.

Arguing against such principles, Langacker (1987, p.28) introduces the Exclusionary
Fallacy, noting that

The gist of this fallacy is that one analysis, motivation, categorization,
cause, function, or explanation for a linguistic phenomenon necessarily
precludes another.

In Double R Grammar, the validity of Langacker’s Exclusionary Fallacy is accepted and
it is suggested that the above principles commit this fallacy in the name of efficiency and
economy of representation. But they ignore the possibility of a trade-off between
economy of representation and efficiency of processing. Redundancy in the encoding of

19

information in the internal lexicon at different levels of abstraction is accepted as the
norm and improves processing efficiency. This redundancy is functional in that given the
associative (content addressable) memory capabilities available to humans, the encoding
of frequently used values reduces considerably the amount of computation required on
average—often replacing computation with simple memory retrieval.

 X-Bar Theory

The meaning based definitions of specifier, head, modifier and complement used in
Double R Grammar can be contrasted with the syntactic based definitions of these terms
in X-Bar Theory (Chomsky, 1970; Jackendoff, 1977). In X-Bar Theory there are
typically three levels of syntactic representation: (1) the base or minimal level (X°), (2)
an intermediate or non-minimal level (X'), and (3) a maximal level called the maximal
projection of the head (X'' or XP). The head is the syntactic type (e.g., N, V, A, P) for
which the variable X is a generalization. At each level in the representation, X
corresponds to the same syntactic type and the head is said to project that type from X°
thru X' to X''. Specifiers are defined configurationally with a description like “daughter
of the maximal projection (XP) which is sister to a non-minimal head (X').” The
configural definition of specifiers is widely accepted and specifiers are typically
considered to be purely syntactic, making little or no contribution to meaning. It has even
been argued that the purely syntactic nature of specifiers provides evidence for the
independent reality of syntax. Complements are defined configurationally as the
linguistic elements which combine with a head (X°) to form a non-minimal head (X').
Modifiers (or adjuncts), to the extent that they are defined in X-Bar Theory, are linguistic
elements which combine with heads without changing the level of the head. Viewed
graphically (and ignoring modifiers), X-Bar Theory posits the following basic structure
(Figure 8):

Figure 8 A common, simplified variant of X-Bar Theory

20

Double R Grammar accepts that X-Bar Theory captures an important grammatical
generalization, but suggests that that grammatical generalization be given a semantic
basis (Ball, 2003 manuscript in preparation a). Doing so makes it possible to provide an
underlying semantic motivation for X-Bar Theory and also offers the prospect of
avoiding some of the pitfalls that a purely syntactic description can lead to. For example,
the confusion over whether Tense (or Inflection) or V is the head of a predicate (i.e., VP
or IP or TP) results from the assumption that the head must project the syntactic category
of the predicate. But if this is true, then Tense must be the head of the predicate as is
assumed by Chomsky (1995) since Tense is assumed to project the syntactic type of the
predicate. On the other hand, V is the central semantic element of the predicate, with
Tense filling a more peripheral semantic role. That is, V has a semantic prominence that
does not hold for Tense. This leads Jackendoff (1977, 2002) to assume that V is the head
of the predicate and not Tense. Similarly, for COMP. If COMP projects the syntactic
type (i.e., relational type) of a clause (i.e., CP or S), then COMP must be the head
according to Chomsky (1995). But COMP is clearly a peripheral (and optional) element
of a clause with V being the central semantic element. Recognizing that the role of a
specifier and the role of a head are distinct, and equating syntactic type with referential
type, it is easy to see that Tense projects the referential type of the predicate, whereas V
projects the semantic type of the predicate. Similarly, COMP projects the referential type
of a complement clause whereas V projects the relational type of the clause. The
optionality of COMP reflects the fact that clauses have a default referential type (i.e.,
situation referring expression), but that default can be overridden by a complementizer as
in “That he likes you (is nice)” (i.e., objectified situation referring expression).

In a similar confusion, Abney’s (1987) DP Hypothesis posits that determiners head
determiner phrases (i.e., what are traditionally called noun phrases) with the determiner
subcategorizing for a noun phrase complement. In the expression “the man,” “the” heads
a determiner phrase (DP) with “man” functioning as an NP complement. However, there
is a basic problem with this hypothesis. The semantic type of object referred to by a DP is
determined by the noun which heads the noun phrase complement (using Abney’s
terminology) and not the determiner. Thus, the complement must project the semantic
type of the DP. However, the idea that a complement can project the semantic type of an
expression, runs counter to the whole notion of what a head is. The general direction in
X-Bar Theory of treating functional elements like I (Inflection), T (Tense), D
(Determiner), and C (Complementizer) as the heads of phrases like IP, TP, DP and CP
leads McCawley (1989) to lament “…one of the things that annoys me about syntactic
categories as they’re treated in real recent MITish stuff is that it’s really become hard for
MITish people to say ‘modifier’ anymore. I mean, all sorts of things that are to me
obvious modifiers now get represented as heads of things they aren’t heads of.”

Abney (1991) resorts to the introduction of semantic heads or s-heads to distinguish
content-based heads from functional heads. “Intuitively, the s-head of a phrase is the
most prominent word in the phrase” (ibid., p. 2). Abney’s s-head comes close to the
notion of head used in Double R Grammar—although his treatment of the noun head of
the object of a preposition as the s-head of the prepositional phrase contrasts with the
Double R Grammar treatment in which the preposition is the head of the prepositional

21

phrase. Distinguishing s-heads from functional heads improves on the DP Hypothesis,
but still leaves open the problem of projecting the semantic type of the expression from
the embedded s-head complement. Further, treating a word like “man” in the expression
“the man” as an NP complement and maximal projection, distances the notion of
maximal projection from referring expression and introduces a phrasal level of
representation where none is needed except to meet the syntactic requirement that
complements are maximal projections.

Cann (1999) puts forward a syntactically based dual-head proposal in which the specifier
is treated as a secondary head with both the specifier and the head projecting features.
Cann’s syntactic treatment comes close to that of Double R Grammar, although his
approach is not semantically motivated and he does not adopt a referential basis for
distinguishing the role of the specifier from the semantic role of the head.

In the version of X-Bar Theory diagrammed in Figure 8, a single complement combines
with the head and it is unclear how multiple complements should be treated. From a
relational perspective this variant of X-Bar Theory is too restrictive. Relational elements
may relate multiple arguments, with transitive relational elements including transitive
verbs and prepositions being prototypical. But X-Bar Theory provides no mechanism for
representing the relationship of the subject or first argument to the relational element and
the specifier position has been co-opted in several variants of X-Bar Theory for this
purpose. In fact, Cann (1999) suggests that Chomsky’s main motivation for introducing
the specifier was to provide an account for the subject. In Double R Grammar, the subject
is a complement of the relational head of a clause, not a specifier. The subject says
nothing about the referential status of the clause. That the subject happens to be in the
typical position of a specifier in English is only true because the real predicate specifier
(i.e., the auxiliary verb or tense marker on the main verb) is treated as a head and not a
specifier. Further, treating the subject as a specifier still leaves open the question of how
to handle multiple object complements. For example, in the expression “I bet you $50 we
win” there are three complements “you,” “$50,” and “we win” following the verb “bet”
in addition to the subject complement. X-Bar Theory provides no mechanism for
representing more than one object complement which does not violate some basic
assumption of the theory (e.g., allowing additional complements to combine with non-
minimal heads). Jackendoff (1977) gets around this problem by treating the term specifier
as referring to everything to the left of the head and the term complement as referring to
everything to the right of the head and according these terms no theoretical significance.
And Chomsky in his original formulation of X-Bar Theory (1970) allows the term
complement to refer to multiple complements. Unlike Jackendoff, Double R Grammar
accords these terms theoretical significance, and despite Jackendoff’s claim that
Chomsky did not accord them theoretical significance, Chomsky’s choice of the terms
specifier and complement suggests otherwise as does Chomsky’s suggestion that
determiners (in NPs), auxiliaries (in VPs) and degree adverbials (in APs) function as
specifiers (i.e., they specify NPs, VPs and APs, respectively). Not only does Double R
Grammar accord these terms theoretical significance, Double R Grammar attempts to
provide a semantic motivation for their existence.

22

Finally, X-Bar Theory is an overgeneralization in that it suggests that all heads take
complements. However, in Double R Grammar only relational heads take complements
and the heads of object referring expressions do not take complements when that head is
non-relational as is typically the case.

The key advance made in X-Bar Theory is the distinction between specifiers and
modifiers (or adjuncts). Chomsky (1970) realized that the specifier played a different
syntactic role than adjuncts. The specifier combines with a non-maximal head to form a
maximal projection whereas adjuncts combine with a non-maximal head without forming
a maximal projection. Unfortunately, the purely syntactic basis of X-Bar Theory leaves
this distinction unmotivated and the specifier has taken on a range of different
(semantically unmotivated) syntactic functions in various versions of X-Bar Theory (e.g.,
the treatment of the subject as a specifier; the treatment of the specifier position as a
landing site for movement). In Double R Grammar a maximal projection corresponds to a
referring expression and it is the specifier that typically determines a referring expression.
Modifiers do not perform this referential function and they do not combine with heads to
form maximal projections (unless the head is already a maximal projection); rather, they
perform a semantic function in constraining the semantic range of the head they modify.

In earlier linguistic treatments, specifiers and modifiers were typically lumped together as
modifiers, adjuncts, or attributes (e.g., Hockett, 1958, Lyons, 1968 and McCawley above)
and the term specifier does not occur. For example, Lyons (1968, p. 233), in discussing
endocentric constructions, states that “the constituent whose distribution is the same as
that of the resultant construction is called the head; the other constituent is called the
modifier.” Current versions of dependency grammar (e.g., Hudson 1984) and
(combinatorial) categorial grammar (e.g., Steedman, 2000) continue to treat specifiers
and modifiers alike as dependents of the head with which they combine, although
Montague Grammar (Rick Cooper, personal communication) apparently treats the
determiner as a head and not a modifier (pre-dating this use in current versions of X-Bar
Theory).

Some variants of X-Bar Theory (and categorical grammar) adopt a strong version of the
binary branching hypothesis which allows a non-terminal to expand into at most (and at
least) two linguistic elements. The binary branching hypothesis is supported on primarily
formal grounds which have no semantic basis and its acceptance clouds the
representation of the relationship between a relational element and its arguments when
there is more than one argument. Double R Grammar allows more than one complement
to be represented on a single level of representation, especially at the clausal level, and
more directly represents this relationship.

The binary branching hypothesis is an example of a formal approach to syntactic analysis
which is too rigid to be supportable. There are too many dimensions of meaning that need
to be encoded for such a rigid hypothesis to be sustainable. The same holds true for X-
Bar Theory more generally. The specifier in X-Bar Theory is the locus for the encoding
of referential meaning. However, referential meaning may also be encoded via
morphological marking (e.g., singular vs. plural number marking), or may be an inherent

23

part of a lexical item (e.g., deictic words, proper nouns, and pronouns). As such a
separate specifier need not always mark maximal projections (i.e., referring expressions),
and the specification function may well be spread across multiple lexical items—both of
which violate the basic X-Bar Schema. Viewed as a representation of the prototypical
structure of a nominal (ignoring complements) or clause (ignoring the lack of a subject
complement), the schema is entirely appropriate. Put forward as an inviolable element of
universal grammar, it is fraught with contradictions and inconsistencies typical of the
kinds of grammatical analyses it was intended to replace. As a final example, consider
that the proliferation of functional heads, combined with the binary branching hypothesis,
leads to a proliferation in the number of levels in X-Bar Theory based representations.
But there is nothing in the X-Bar Schema that predicts the order of composition of these
levels. That is, the head does not subcategorize for its complements. While it is implicitly
assumed that V combines with NP (obj) to form VP, and I (or T) combines with VP to
form IP (or TP), and C combines with IP to form CP, nothing in the X-Bar Schema
requires this, and T could just as well combine with PP or AP to form TP, or V could
combine with TP or CP to form VP. Adding in additional phrasal level categories (e.g.,
NegP, AgrS, AgrO) only exacerbates this problem. Of course, it is typically assumed that
lexical items provide the subcategorization of complements needed to avoid this
overgeneration of possible structures, but given such subcategorization frames for
complements and adding similar frames to handle the function of specifiers, X-Bar
Theory becomes largely redundant and the subcategorization schemas of individual
lexical items become nearly all that is necessary (which may help explain the elimination
of X-Bar Theory in the Minimalist Program). Nonetheless, X-Bar theory still represents a
useful generalization over those schemas, although it needs to be made consistent with
the schemas it generalizes and it is unlikely to be universally applicable in any strong
sense.

Langacker’s Conceptual Schema for Nominals and Clauses

Langacker (1991) provides a detailed Cognitive Linguistic description of the conceptual
content of nominals and clauses which is closely aligned with the basic composition of
referring expressions as described in Double R Grammar. Langacker puts forward the
following schematization of the conceptual content of nominals and clauses:

 (G(Q(I(T)))

where G = grounding predication, Q = quantifying predication, I = instantiating
predication, and T = type specification. A grounding predication grounds an expression
in the context of utterance of the expression, where that context includes the speaker and
hearer and the immediate environment of the speaker and hearer. The prototypical
grounding predication is a deictic word that refers to the speaker, the hearer or some other
person in the immediate context (e.g., “I,” “you,” “he,” or “she”). The determiner in a
nominal expression and the first auxiliary (or modal) verb in a clause also function as
grounding predications. In the case of a clause, the first auxiliary grounds the situation
expressed by the clause into the context of utterance. A quantifying predication quantifies
the number of discrete entities or events that are grounded by the grounding predication.

24

In a nominal, the prototypical quantifying predication is a number like the number “two”
in “the two books”. In the expression “some books,” “some” functions as both a
grounding and a quantifying predication. Note that “two” may combine with a separate
grounding predication (e.g., the determiner “the”) whereas, “some” does not. To
distinguish these different uses of quantifiers, Langacker categorizes them into absolute
quantifiers like “two” and relative quantifiers like “some.” A relative quantifier is
relative to some reference set. Thus, “some” represents a quantity relative to a reference
set and grounds the quantity with respect to that reference set, whereas “two” is an
absolute quantity independent of any reference set. Adverbs like “everyday” and
“repeatedly” often function as quantifying predications in clauses. An instantiating
predication instantiates an instance that may be further quantified and grounded in the
context of utterance. According to Langacker (1991, p. 147), the head of a nominal (or
clause) functions as an instantiating predication. Instantiation is different from grounding.
Instantiation creates or identifies an instance of a type, but does not necessarily ground
that instance in the immediate context of the speaker and hearer. Finally, the word (or
expression) that functions as the head of a nominal expression or clause provides a type
specification which identifies the type of object or relation that the expression profiles.
Thus, according to Langacker, the head of an expression minimally functions to provide
both a basic type specification and to instantiate an instance of that type in the domain of
instantiation (i.e., the space domain for nominals and the time domain for clauses). For
nominals, this is true whether the head is singular or plural. If the head is plural, an
instance of a collective type—what Langacker calls a replicate mass—is instantiated.

Langacker uses the functional categories head, modifier and complement (but not
specifier) in describing how grounding, quantifying, and instantiating predications, and
type specifications compose together. Essentially, the head is a constituent which
combines with a modifier such that the head provides the profile of the composite
expression. A modifier, then, constrains the type specification of the head, but does not
provide the profile for the composite expression. That is, the profile of the head projects
to the composite expression, not the profile of the modifier. Absolute quantifiers function
like modifiers in that the head they combine with provides the profile of the quantified
expression. Langacker treats grounding predications special in that they not only combine
with heads, but, unlike other modifiers, they profile the head they combine with. Note
that it is the head that a grounding predication profiles, not the grounding predication
itself. Further, it is the addition of a grounding predication that results in a full-fledged
nominal. According to Langacker, “the two components [grounding predication and
head] have equal claim to the status of local head, since both their profiles correspond to
the composite-structure profile (that of the nominal as a whole)” (1991, p. 147-8). With
respect to nominals grounded by the determiner the, Langacker states that “to the extent
that the is regarded as the head, the other component—which elaborates the head—is a
complement. To the extent that the elaborating structure is regarded as the head, the
constitutes a modifier” (1991, p.147). In the (G(Q(I(T)))) schema, the parentheses reflect
the order of composition with the type specification first composing with the instantiating
predication which then composes with the quantifying predication and finally the
grounding predication. Thus, a grounding predication presupposes a quantifying
predication which presupposes an instantiating predication which presupposes a type

25

specification. Each level of composition reflects a modifier-head or head-complement
relationship. Note that the order of composition is independent of the surface order of the
constituents and the component elements may be morphological as well as syntactic.

In Double R Grammar there is a fourth functional category called the specifier. The
grounding predication typically corresponds to a specifier with the specifier functioning
as the “referential head” of a composite expression (the quotes around “referential head”
indicate the non-standard use of the term “head” in this expression). The specifier or
“referential head” combines with the “relational head” (encompassing non-relational
objects) to form a composite expression, with the “relational head” providing the type
specification for the composite expression and the “referential head” projecting the
referential type of the composite expression. The introduction of the specifier function
avoids the need to view the “relational head” as a complement as suggested by
Langacker. It allows the head (as opposed to a complement) to project the relational
type—thereby, retaining a semantic basis for the notion of a head and at the same time
maintaining a distinction between heads and complements (i.e., complements do not
project relational type to composite expressions). It avoids the inconvenience of
suggesting that “the” is the head of the expression “the book”—contrary to any semantic
notion of what a head is. (This same argument was used against Abney’s DP Hypothesis
and his introduction of s-heads as complements of a DP head in the previous section.)

There is a close correspondence between Langacker’s grounding predication and the
function of a specifier as the determinant of the referential type of an expression, and
between Langacker’s type specification and the function of a head as the determinant of
the relational type of an expression. Further, Langacker’s conception of modifiers as
providing a higher order-type specification is entirely consistent with the function of
modifiers in Double R Grammar. Less clear is the correspondence between Langacker’s
quantifying and instantiating predications and the functional categories of Double R
Grammar. The fact that a quantifier may function as a specifier (e.g., “two” in “two
books”), or as a modifier (e.g., “two” in “the last two books”), or even as the head of an
expression (e.g., “two” in “I want two”) argues against its treatment as a separate
functional category. In this regard, a quantifier is more like a noun or a verb that can take
on multiple functional roles, than it is a separate functional category and the treatment of
quantifiers as a part of speech (where a part of speech reflects the inherent meaning of a
lexical item) as opposed to a functional category is suggested. The quantifying
predication may be encoded in multiple functional roles even within a single expression
as in “these two books” where the specifier “these” indicates quantity as does the
modifier “two” and the head “books.” Similarly, the grounding predication appears to be
encoded in multiple functional roles as in the nominal “two books” where the specifier
“two” provides the (indefinite) grounding predication and the nominal “books” where the
plural marker on the head also provides the (indefinite) grounding predication. However,
Langacker argues that number marking on a head noun is part of the basic type
specification with the head noun instantiating an instance of the basic type (i.e., a
replicate mass when the noun is plural), and that number marking does not provide a
quantifying predication (1991, p. 147). If Langacker’s argument is accepted, then
quantifying predications and instantiating predications can be distinguished. Otherwise,

26

assuming all nominal heads are marked for number and that number provides a
quantifying predication, then nominal heads are quantified as well as instantiated and this
distinction cannot be maintained. Double R Grammar assumes that the number marking
on heads supports a quantifying predication and, for plurals, a grounding predication, as
well—deviating from Langacker in this respect. The ungrammaticality of the expression
“these book” reflects a conflict in the quantifying predication provided by the specifier
“these” (plural) and the head “book” (singular) and supports the idea that single count
nouns provide a quantifying predication. However, the failure of single count nouns to
function as full nominals (e.g., “book” in “I like book”) reflects their lack of a grounding
predication. On the other hand, plural count nouns provide both a quantifying and a
grounding predication and can function as full-fledged (indefinite) nominals (e.g.,
“books” in “I like books”).

One way of integrating Langacker’s account of conceptual composition with Double R
Grammar is to treat grounding predications, quantifying predications and type
specifications as conceptual features that supplement the semantic content of heads,
modifiers, specifiers and complements. Note that these conceptual features are not the
grammatical diacritics that Langacker argues against in syntactic approaches to linguistic
representation. Rather, they represent additional semantic information that is provided by
the word or expression functioning as a head, modifier, specifier or complement. For
example, in the expression “the book,” the word “the” is functioning as a specifier which
provides a grounding predication, whereas “book” is functioning as a head which
provides a quantifying predication and a type specification. Note that “the” (unlike “a”)
does not provide a quantifying predication since it is consistent with both “the book” and
“the books.” Schematically, we can represent the functional form of the expression “the
book” as

 (Spec [G] (Head [Q,T]))

where [G] indicates that the specifier provides a grounding predication and [Q,T]
indicates that the head includes a quantifying (i.e., singular) predication and a type
specification. Figure 9 uses a tree diagram to represent this schema and the words that
instantiate the functional roles gives

Figure 9 Adding abstract conceptual features

27

Note that [G] and [Q,T] identify the conceptual roles of the specifier and head, but do not
provide any details about those conceptual roles. For example, Q indicates that the word
“book” provides a quantifying predication without saying what that predication is—
namely, singular. Likewise, “the” provides a grounding predication—namely, definite
grounding. If we substitute these more detailed descriptions into the tree diagram we have
Figure 10, where [def] indicates the definite grounding predication of “the”, [sing]
indicates the singular quantifying predication of “book” and [book] indicates the type
specification. This representation is very close to that put forward in Double R Grammar
when features are added.

Figure 10 More specific conceptual features

In Double R Grammar, features are a means of providing additional semantic detail at a
particular level of abstraction—in particular, at the level of abstraction represented by the
functional categories head, modifier, specifier, and complement (and their subtypes). For
example, the functional category specifier may be subcategorized as object specifier or
predicate specifier and object specifier may be subcategorized as definite object specifier
and indefinite object specifier. Alternatively, a feature notation may be used in which the
more abstract specifier category is marked for the relevant semantic features as in

 specifier [obj, definite] vs. definite-object-specifier (e.g., “the”)
 specifier [obj, indefinite] vs. indefinite-object-specifier (e.g., “a”)
 specifier [pred, finite] vs. finite-predicate-specifier (e.g., “is”)
 specifier [pred, nonfinite] vs. nonfinite-predicate-specifier (e.g., “to”)

These are really just alternative representations of the same semantic content. That is,
regardless of how the semantic content is represented, the word “the” provides
information about the definiteness and “objectness” of the head it profiles and the word
“to” (i.e., the infinitive marker) provides information about the non-finiteness and
“predicateness” of the head it profiles.

The correlation between categories and features goes back at least to Chomsky (1970, p.
208) where he suggests the replacement of categories by sets of features, although he
continues to use category labels for convenience. However, categories are more than just
a convenience in Double R Grammar. They are the basis for the creation of schemas at
multiple levels of abstraction. Further, there is no assumption that the feature set of a
category is necessarily fully determinate, nor that the inheritance of features in a

28

hierarchy of categories is absolute and indefeasible, nor that all features are of equal
importance to a category.

The integration of Langacker’s conceptual schema with Double R Grammar would be
facilitated by the addition of the specifier function to his description. The addition of the
specifier function makes it possible to provide more constrained and semantically
motivated definitions of the traditional head, modifier and complement functions than is
otherwise possible. The specifier is the locus for the encoding of referential information.
Modifiers and heads are the locus for the encoding of information about the relational
type of expressions. Complements are the locus for encoding information about the
participants in relations. In Langacker’s terms, the specifier supports the encoding of
grounding and (optionally) quantifying predications. Heads and modifiers support the
encoding of type specifications and, via number marking, quantifying and grounding
predications. Quantifying predications are primarily referential and are typically
expressed by quantifiers functioning as specifiers, but may also be expressed by
quantifiers functioning as modifiers that constrain the relational type of the heads they
modify. In addition to encoding referential information, specifiers profile the heads they
specify. In addition to encoding relational information, modifiers profile the heads they
modify. Complements encode referential and relational information about the participants
in relations, but that information is not profiled in the larger relational expressions in
which they participate.

In discussing the grounding predication of clauses, Langacker argues that only the first
auxiliary or modal verb provides the grounding predication and that all other auxiliaries
form part of the head. Further, the composition of these components proceeds from the
main verb outwards. For example, in the expression “he could not have been kissed”,
“kissed” first combines with “been” which combines with “have” which combines with
“not” which combines with “could”. A similar position was adopted in an earlier version
of Double R Grammar in which the first auxiliary or modal (also called the operator)
filled the specifier role, with other auxiliaries functioning as modifiers of the main verb
(note that Langacker treats the outer auxiliary as a head which combines with a verbal
complement). However, there are reasons for modifying this position. Auxiliaries are
members of a closed class verb subtype that look and behave very much like other
specifiers (i.e., they are short, frequently occurring, and provide a referential function).
Further, from a processing perspective, delaying the composition of complex auxiliaries
until the main verb is processed, would strain the capacity of short-term working
memory. In the processing of “he could not have been kissed”, if auxiliaries do not
compose together until the main verb is encountered, five separate linguistic chunks (e.g.,
“he”, “could”, “not”, “have”, and “been”) would need to be retained in short-term
working memory until the main verb “kissed” is processed. Allowing auxiliaries to
compose together in forming a complex specifier “could not have been”, avoids the need
to retain separate chunks in short-term working memory.

29

Double R Process: The Psycholinguistic Theory

Double R Process is a psychologically plausible processing mechanism for constructing
integrated representations of referential and relational meaning. Double R Process is
highly interactive. Meaning representations are constructed directly from input texts.
There is no separate syntactic analysis that feeds a semantic interpretation component.
The processing mechanism is driven by the input text in a largely bottom-up, lexically
driven manner. There is no top-down assumption that a privileged linguistic constituent
like the sentence will occur (vice Townsend & Bever, 2001).

In Double R Process there is no phrase structure grammar and no top-down control
mechanism. How then does Double R Process construct representations of input text?
Operating on the text from left to right, schemas corresponding to lexical items are
activated. For those lexical items which are relational or referential, these schemas
establish expectations which both determine the possible structures and drive the
processing mechanism. A short-term working memory (Kintsch, 1998) is available for
storing (or keeping active) arguments which have yet to be integrated into a relational
structure, partially instantiated relational and referential structures, and completed
structures. If a relational entity is encountered which expects to find an argument to its
left in the input text then that argument is assumed to be available in short-term working
memory. If the relational entity expects to find an argument to its right in the input text,
then the relational entity is stored (or kept active) in short-term working memory as a
partially completed structure and waits for the occurrence of the appropriate argument.
When that argument is encountered it is instantiated into the relational structure in short-
term working memory. In the case where the text contains a profiled or otherwise salient
non-relational entity (e.g., the subject), that entity may be made separately available in
short-term working memory. Otherwise, non-profiled and non-salient arguments are
incorporated into relational structures and are not separately available in short-term
working memory. This keeps the number of separate linguistic units which must be
maintained in short-term working memory to a minimum. A key component of the
processing mechanism is the activation and selection of schemas associated with the
relational or referential units in the input text. These schemas set up expectations which
drive the processing mechanism and they also function as the key determiners of the
structure of the input text.

It has been suggested that knowledge of language consists largely in the availability of
schemas at multiple levels of abstraction, with more concrete schemas carrying most of
the burden for language processing. But how might these schemas be organized, and how
might they be accessed in language processing? Double R Process assumes that these
schemas are organized in the form of an associative network over which a spreading
activation process operates (e.g., Anderson, 1983, Collins & Loftus, 1975). As a piece of
text is processed, schemas containing representations of lexical items which correspond
to lexical items in the input text will be activated and will in turn activate associated
schemas to some degree. Given this spreading activation mechanism, it follows that those
schemas which most closely correspond to the input text will be most strongly activated.
For the most part, these schemas will be concrete and lexically laden. Very abstract

30

schemas which contain no lexical items can only be indirectly activated since they have
no direct correspondence to the input text. Further, a schema may be activated despite the
fact that it does not correspond exactly to the input text. This fact makes it possible for
the system to deal with degraded or erroneous input, although in general the closer the
correspondence between the input text and a schema, the higher the activation of that
schema. In addition to the activation mechanism, there must be some selection
mechanism for choosing among the activated schemas. In the simplest case this
mechanism may simply select the most highly activated schema, and this selection
process may be automatic. But selection of a particular schema should not preclude
subsequent change in the context of new information and it may also be the case that
more than one schema may be selected under certain circumstances (e.g., in the case of
puns and double entendres). Thus, the selection process is both tentative (i.e., subject to
revision) and preference based (Wilks, 1975).

Once selected, a schema must be integrated with the preceding linguistic context. The
basic mechanism for integration is elaboration (Langacker, 1991). A relational schema
typically provides only an abstract representation of its arguments. These abstract
representations provide minimal information about the arguments. For example, the
schema |subj kick obj| provides only limited information about the arguments of kick—
i.e., that there is a subject argument that is an object referring expression which typically
occurs before kick in the input stream, and that there is an object argument that is also an
object referring expressions and which typically occurs after kick in the input stream.
When the word “kicked” is processed, this schema is likely to be activated and selected.
Its integration with the preceding linguistic context depends on the availability of an
object referring expression capable of elaborating the subject argument (assuming the
subject argument is integrated at this point).

Elaboration of the arguments of a relation is not the only possibility. Any component of a
schema is a potential sight for elaboration, even a component which has already been
elaborated. For example, if the input is the expression “the man kicked the bucket” then
when the object “the bucket” is processed a specialized schema corresponding to the
idiomatic expression “kicked the bucket” will be activated and will need to be integrated
with the preceding context. Assuming the |subj kick obj| schema was activated by the
processing of the lexical item “kicked”, and the |subj kicked the bucket| schema is
subsequently activated, a mechanism for integrating these two schemas is needed. That
mechanism will need to map the subject from the |subj kick obj| schema to the subject
from the |subj kicked the bucket| schema and map |…kick obj| from the |subj kick obj|
schema to “kicked the bucket” from the |subject kicked the bucket| schema. This
mapping needs to be automated since it does not take more time to process idiomatic
expressions than non-idiomatic expressions (in fact the opposite is true).

The notion of elaboration used in Double R Process follows (and extends) that of
Langacker (1987, 1991). It is closely related to the more formal notion of unification
which is explicitly used in several current linguistic theories (e.g., HPSG, Functional
Unification Grammar, Tree Adjoining Grammar). However, elaboration, as used in
Double R Process, differs from unification in several important respects. Elaboration is

31

limited in terms of the recursive capability to elaborate substructures within structures.
These limits follow from psychological limits on such capabilities in humans.
Unification, as formally defined, has no such limits. Elaboration allows for the
integration of partially matching structures, and may involve the integration of partially
contrasting structures wherein the elaborating structure modifies (or replaces part of) the
structure being elaborated. Unification, as formally defined, does not support partial
matching. Elaboration implies directionality with a more concrete structure elaborating a
more abstract structure. Unification implies no such directionality. The formal notion of
unification, appropriately constrained to limit the recursive unification of substructures
and extended to support accommodation, could be viewed as a mechanism of elaboration.
Kempen and Vosse adopt a similar position in their Unification Space model of syntactic
processing which assumes “a non-recursive form of feature unification” (Kempen, 1996,
p. 215).

A consideration of the application of schemas to the processing of language offers several
insights. If high-level abstract schemas drive the processing mechanism, then the
processor can be said to be grammar driven. On the other hand, if low-level schemas with
specific lexical items drive the processing mechanism, then the processing mechanism is
essentially lexically driven. As noted above, it is an assumption of Double R Process, in
agreement with Langacker (1987), that more specific schemas have “priority” over more
abstract schemas in normal processing, and that most of the knowledge needed for the
processing of familiar expressions has been lexicalized in the form of schemas containing
specific lexical items. In unusual situations, abstract schemas may assume greater
importance. For example, second language learners who are explicitly taught the
grammar of a language may rely on more abstract schemas than native speakers of the
language—not only as a result of instruction, but because they may lack the more specific
schemas available to native speakers.

It is important to note that schemas set up expectations for the occurrence of various
elements, but do not preclude the occurrence of other elements. That is, the application of
a schema does not require the exact matching of the elements of the schema with
elements of the input text. In this regard, schemas do not behave like the rules of a phrase
structure grammar. For example, the |subj verb obj| schema sets up expectations for the
occurrence of a subject, verb and object, but does not preclude the occurrence of an
adverb or prepositional phrase in any input text to which the schema corresponds. Thus
the schema is entirely consistent with the sentence

 He always eats fish on Friday.

The occurrence of the adverb “always” and the prepositional phrase “on Friday” in this
sentence activate additional schemas which must be integrated with the |subj verb obj|
schema during the construction of a representation for this sentence. There is no need for
a schema to specify all possible elements which can occur at all possible positions in the
schema so long as a mechanism for integrating multiple schemas exists. Double R
Process provides such a mechanism. On the other hand, the existence of schemas which
are completely specified with regard to their lexical content and are only weakly

32

integrable with other schemas is not precluded (e.g., schemas corresponding to idiomatic
and formulaic expressions). In general, abstract schemas will be highly integrable with
other schemas, whereas, concrete schemas will be less integrable with other schemas.

The activation-selection-integration process which is the basis of Double R Process
involves one automatic and two control processes: (a) an automatic spreading activation
process, (b) a control process for selecting activated schemas from long-term memory
and placing them (or making them active) in short-term working memory, and (c) a
control process for integrating selected schemas in short-term working memory. The
automatic process of spreading activation and the control process by which activated
schemas are selected and placed (or made active) in short-term working memory will not
be discussed further.

The control process of integrating selected schemas in the short-term working memory
can be described algorithmically in terms of the individual processing steps required to
integrate the schemas which have been selected for further processing. This process will
be illustrated by walking through the steps involved in the processing of the following
English sentence:

 The extremely old dog lover likes to sleep a lot.

The processing of this sentence begins with the activation and selection of a schema
corresponding to the first lexical item. The word “the” is identified and a referential
schema which reflects its typical function as a specifier which combines with a head to
form an object referring expression is selected:

Figure 11 A specifier schema

In this representation, obj-spec stands for object specifier, and the dashed line extending
from head indicates that this component has not yet been elaborated. This schema is
equivalent to a schema of the form |obj-spec head| except that the type of the composite
expression (i.e., object referring expression) is explicitly represented and the object
specifier function is elaborated by the determiner “the”. Part of speech information is left
out of the schema since the focus is on identifying the functional role that the lexical item
“the” takes on. Since the head is expected to occur after the specifier in this schema, the
specifier must await the appearance of this head before combining with it to form an
object referring expression. The specifier schema is retained in short-term working
memory with its head unelaborated and the processing of the specifier is temporarily
halted. The processing of the next lexical item begins. The word “extremely” is identified

33

and determined to be an adverb. In the context of an object specifier schema, “extremely”
is presumed to be functioning as a relation modifier as represented by the following
schema:

Figure 12 A relation modifier schema

According to this schema, the relation that “extremely” modifies typically occurs to its
right in the input stream (at least in the context of an object specifier) and processing of
the relation modifier is temporarily halted. The processing of the next lexical item begins.
The word “old” is identified and determined to be an adjective. In the context of an object
specifier and relation modifier, “old” is presumed to be functioning as an object modifier
and the following schema is placed in short-term working memory:

Figure 13 An object modifier schema

Note that there are three separate schemas in short-term working memory at this point.
Since “old” is a relation, its schema can be integrated with the relation modifier schema
giving:

Figure 14 Integrating a relation modifier with an object modifier

34

The head that occurs with “old” typically occurs to its right in the integrated schema and
the processing of “old” is temporarily halted. Note that whereas the schema for
“extremely” is integrated with the schema for “old” prior to the integration of a head into
the “old” schema, this schema is not integrated with the specifier schema for “the” at this
point—since integration with the specifier requires a fully elaborated head.

Processing continues with the next lexical item. The word “dog” is identified and
determined to be a noun. In the context of an object specifier and object modifier schema,
“dog” is determined to be a head that elaborates the head function in the schema for “old”
giving:

Figure 15 Integrating a head with an object modifier

This modified head then elaborates the head function of the specifier schema of “the”
giving an object referring expression:

Figure 16 Integrating a specifier with a head

At this point in processing, there is a single object referring expression which is a fully
elaborated schema in short-term working memory. Object referring expressions are non-
relational and do not typically establish expectations for other linguistic units. Processing
continues with the next lexical item. The word “lover” is identified and determined to be
a noun. In the context of an object referring expression, “lover” is determined to be the
head of that expression, displacing the current head and making it a modifier leading to:

35

Figure 17 Accommodating a second head noun

The processing of “lover” uses a special form of elaboration in which an existing schema
is modified to accommodate the evolving context. The basic mechanism for processing
“lover” in this context is to modify an existing schema to accommodate it. There is a
(learned) procedure available to support such accommodation and it is not a question of
backtracking and trying different alternatives until a correct structure is obtained. The
major advantage of accommodation over backtracking is that the full current context is
available to support accommodation, whereas in backtracking the context is typically
unraveled and only the fact that the current choice is incorrect is typically available to the
processing mechanism. That is, the context which forced the backtracking is not available
to guide the selection of an appropriate structure.

Following the accommodation of “lover”, processing continues with the next lexical
item. The word “likes” is identified and determined to be a present tense verb which
determines a predicate referring expression functioning as a predicate in a situation
referring expression with two participants, a subject and an object

Figure 18 A relational head schema

36

where SRE is situation referring expression, PRE is predicate referring expression, and
pred-spec is predicate specifier. In the context of an object referring expression, the
object referring expression elaborates the subject of the situation referring expression
giving:

Figure 19 Elaborating the subject argument

Note the assumption that the processing mechanism immediately elaborates the subject
and does not wait until after the processing of the object to do so. The asymmetry of
subjects and objects and the salience of the subject relative to the object is assumed not to
be reflected in the processing mechanism in terms of the delayed elaboration of the
subject relative to the object. Once the subject is elaborated, the processing of the schema
for “likes” is temporarily halted and processing continues with the next lexical item. The
highly ambiguous word “to” is identified and its function in the current context is not
immediately determined. The subsequent context is needed to resolve the ambiguity. The
next lexical item is processed and “sleep” is identified and determined to be a verb. In the
context of “to”, the non-finite, intransitive predicate referring expression “to sleep” is
identified and its schema is retrieved and made available in short-term working memory:

Figure 20 Another relational head schema

37

This schema is integrated with the schema for “likes” elaborating the object argument,
where this elaboration involves accommodating the clausal (i.e., infinitival) complement
by converting the object (typically an object referring expression) to be a clausal
complement. That conversion may involve the retrieval of a schema for “likes” which
includes an infinitival complement and the integration of that schema with the existing
schema for “likes”, or it may more simply involve the conversion of the object argument
of the existing schema to an infinitival complement:

Figure 21 Integrating two relational head schemas

Another part of the integration involves identifying the subject of “to sleep” with the
subject of “likes” (a kind of mutual elaboration, or non-recursive unification). The result
of this integration is a fully elaborated situation referring expression. Following the
integration of the “likes” and “to sleep” schemas, processing continues with the next
lexical item. The word “a” is identified and a specifier schema is retrieved. Then the
word “lot” is identified and in the context of “a” and a situation referring expression, an
idiomatic schema is retrieved.

Figure 22 An idiomatic schema

38

This schema is idiomatic in that the object referring expression “a lot” is recognized as a
expression which functions as a relation modifier despite it nominal form. This schema is
integrated with the preceding context giving:

Figure 23 A fully elaborated situation referring expression

Note the decision to integrate the “a lot” schema with “to sleep” rather than “likes” in this
example.

The processing of the input text is now complete and a representation of the referential
and relational meaning of the expression—a situation referring expression describing a
situation of “liking to sleep a lot” involving an “extremely old dog lover”—is available in
short-term working memory for use in subsequent processing.

During the processing of this sentence, there were several decision points at which
alternative processing decisions could have been made (e.g., integration of the subject
with “likes” prior to processing the object, delaying the integration of a head noun until
the lexical item following the noun is identified and determined not to be another noun).
There is likely to be large variation across individuals (and even within individuals in
different contexts) in terms of the selection of schemas and the timing of their integration.
It may also be true that in contexts where one is only skimming a text, the integration
process may be largely circumvented, resulting in only partially integrated
representations. In general, it is assumed that humans learn effective processing strategies
that tend to work efficiently given their goals and objectives, but that are subject to
modification in particular contexts or when those goals and objectives change. For
example, for verbs that take either an object or a clausal complement (e.g., “I believe
him” vs. “I believe he likes you”), the frequency of occurrence of objects and clausal
complements will contribute to determining which schema is initially preferred.
However, frequency is not the only factor which influences schema selection. It may be
more disruptive to the processing mechanism to have to recover from the inappropriate

39

integration of an object referring expression as the object of a clausal complement verb,
then to delay the elaboration of the object until it can be determined that the object
referring expression is not the subject of a clausal complement. There is some evidence
that experienced readers avoid such early commitments and are less likely to be “garden-
pathed” when the subsequent context indicates the early commitment was incorrect. True
garden-pathing, where readers are forced to backup and re-read a piece of text, is
assumed to be uncommon and typically involves restarting from (near) the beginning of
the text rather than any kind of formal backtracking. More usually, representations are
modified to accommodate inputs which are inconsistent with the prior context rather than
being deconstructed and rebuilt.

The preceding example considered the processing of a sample sentence into a
representation of its referential and relational meaning. In conjunction with the creation
of a representation of the text, a situation model (Kintsch 1998) is also constructed. The
creation of the situation model corresponding to a text is driven by the grounding of the
referential elements of the text being processed. That is, whenever a referring expression
is recognized, the situation model is updated to accommodate that referring expression.
Thus, referring expressions are crucial to the processing mechanism as well as the
representational system. As noted above, the construction of situation models is an active
area of research (Ball, 2003 manuscript in preparation b). Kintsch’s Construction-
Integration Theory (discussed below) is highly compatible with Double R Process and
provides the theoretical framework for this important (but not yet fully elaborated)
component of Double R Process.

Construction-Integration Theory

Construction-Integration (C-I) Theory is a discourse level theory of (language)
comprehension which begins with the construction of the propositions in a chunk of
discourse and continues with their integration into a coherent representation of meaning.
The construction of the propositions in a chunk of discourse is based on guidelines which
have never been fully implemented in a working system (of any substantial size) and C-I
Theory provides only a descriptive account of this process. The representation of the
propositions in a chunk of discourse is called the textbase. As part of the construction
process, the textbase is elaborated with knowledge from long-term memory into a
situation model. An unconstrained associative activation process as well as an inferencing
process support the elaboration of a textbase into a situation model. The situation model
is a network of propositions, some of which originate in the processed text and some of
which result from the elaboration process. The situation model is the output of the
construction process.

The integration process involves the settling out of the activation of the propositions in
the situation model in what Kintsch calls a constraint-satisfaction process. Since there are
inhibitory as well as excitatory associations in the network of propositions, some
propositions will be deactivated during the integration process and some propositions will
become more active. At some point, a stable state will be attained in which the change in

40

activations of the propositions in the network falls below a pre-determined criteria and
the integration process terminates. The resulting network of activated propositions—
some from the text, and some from long-term memory—represents the meaning of the
discourse.

C-I Theory is fundamentally a discourse level theory. The construction process involves
the creation of an activated network of related propositions followed by an integration
process operating over the activated network of propositions. To extend C-I Theory down
to the sentence level (and to integrate it with Double R Process), the construction-
integration process would need to occur after the processing of each lexical item in a
sentence (Kintsch, 1998, p. 101). At this level, the recognition of a lexical item would
lead to the unconstrained activation of associated schemas in long-term memory (the
construction process) followed by integration of the activated schemas with the prior
context leading to the activation of the contextually most salient schema and the
deactivation of non-salient schemas (the integration process). The recognition of the next
lexical item would result in a similar process. It may be that full integration (i.e., full
settling or constraint-satisfaction) does not occur until the end of the processing of a
sentence (or text), but some initial integration is needed to support schema selection and
integration prior to the end of the sentence as each lexical item is processed. In C-I
Theory both the construction and integration processes are largely automated. That is,
there is no overt control mechanism making decisions about how to combine activated
schemas, just the unconstrained association (construction) and constraint-satisfaction
(integration) mechanisms. In fact, Kintsch (1998, p. 118) notes the replacement of an
earlier schema-based control system with the bottom-up constraint-satisfaction
mechanism at the time the C-I architecture was first introduced in 1988. On the other
hand, given the largely automated nature of the construction process, Kintsch’s use of the
term “construction” to describe this process is interesting (and perhaps confusing). It at
least suggests a control mechanism for creating constructions. But according to Kintsch
(1998, p. 94) the “…construction process is only weakly controlled and proceeds largely
in an associative, bottom-up manner….” At the level of the processing of lexical items,
Kintsch’s use of the term construction follows from the claim that “word meanings are
not something to be pulled from a mental lexicon but are ephemeral constructions that are
generated during comprehension” (1998, p. 136). Thus, although the construction process
is largely automated, the result of the process is something that did not exist previously
(i.e., a contextually activated network representing the meaning of a lexical item), and it
is in this sense that the process is constructive.

In Double R Process, the initial schema activation process is automated, not controlled,
and it corresponds quite well to C-I’s construction process. However, the selection and
integration processes of Double R Process are controlled and differ from C-I’s integration
process in this respect—particularly the integration process of Double R Process which is
highly controlled (although proceduralized). To the extent that there are control
mechanisms in C-I Theory, they occur prior to the automated integration mechanism,
whereas in Double R Process integration is the locus of controlled processing. Further,
there is no automated settling out process involving inhibitory associations in Double R
Process. In essence, Double R Process retains the schema-based control process that C-I

41

Theory forsook in favor of an automated constraint-satisfaction process. However, the
schemas used in Double R Process are activated by lexical items in a bottom-up manner
and only create top-down expectations for the arguments of relational lexical items (and
for heads in the case of specifiers and modifiers). Thus, they are quite unlike the much
more elaborate schemas (e.g., restaurant script, grocery-shopping script) that Kintsch was
at pains to eliminate from the integration process (but which are retained in the
construction process to support inferencing).

In Kintsch’s most recent work (Kintsch, 2001), he extends the argument against the
existence of pre-fabricated word senses in the mental lexicon citing examples like “the
horse runs” and “the paint runs” in arguing that the meaning of “run” is contextually
determined and not pre-stored as distinct word senses. The elimination of distinct word
senses in C-I Theory is a laudable objective. It makes conceivable the elimination of
purely conceptual entities (i.e., entities not tied to perception) more generally (Barsalou,
1999)—although Kintsch does not appear to reach this conclusion himself. Kintsch
makes use of Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997) in explaining
how the context of use of a word can be used to derive its meaning. “LSA is a
mathematical technique that generates a high-dimensional semantic space from the
analysis of a large corpus of written text” (Kintsch, 2001, p. 176). In LSA, words and
texts are represented as vectors in that high-dimensional semantic space. The cosines
between the vectors of individual words and/or texts can be computed and used as a
measure of relatedness of those words and texts. Kintsch uses LSA as an objective means
of determining the initial degree of association of the words in a text and of associated
words which are activated as part of the construction process.

LSA has several advantages over more traditional co-occurrence matrices for determining
the relatedness of words or texts. “LSA used a standard mathematical technique called
singular value decomposition, which allows it to select the most important dimensions
underlying the original co-occurrence matrix, discarding the rest.” (ibid. p. 176). Using
LSA, it is quite common to take a co-occurrence matrix containing 1000’s of dimensions
(1 dimension for each word or text) and to reduce that matrix to about 300 dimensions.
The basic psychological claim is that the reduced matrix is actually a better
representation of the relatedness of words and texts than the original co-occurrence
matrix because singular value decomposition eliminates distracting information resulting
from the accidental co-occurrence of words and texts and adds information resulting from
indirect associations which are not captured by mere co-occurrence (e.g., words that are
substitutes for each other, appearing in similar contexts but not appearing together).

Despite LSA’s advantages over co-occurrence matrices as a representation of “semantic
space”, LSA is not adequate, in and of itself, as a full representation of meaning. Word
order is not taken into account within the analyzed texts and the texts “the man bit the
dog” and “the dog bit the man” would have essentially the same semantic vector. Also,
antonyms like “above” and “below” lead to closely related semantic vectors which make
it difficult to distinguish their semantic contrast. And function words like “the” and “of”
which occur in nearly every text cannot be distinguished. For a full representation of
meaning, the meaningful effects of word order and grammatical function need to be

42

considered, and something like a propositional representation which reflects these
influences is needed. Thus, whereas LSA may prove adequate for determining the
meaning of lexical items in context (without the need for distinct word senses), some
mechanism for representing the relationships between lexical items is still needed.

Returning to the propositional level, it was noted above that the situation model that is the
output of the construction process and the input to the integration process is a network of
propositions. According to Kintsch (1998, p. 37) “the predicate-argument schema can be
regarded as a basic unit of language…the predicate determines the number and kinds of
arguments that may fill argument slots, that is, the semantic role of the participants.”
Kintsch provides significant empirical and theoretical motivation for his selection and use
of the predicate-argument schema in representing the meaning of discourse. However,
Hawkins (1984) analyzed the validity of the function-argument and head-modifier
relationships from the perspective of linguistic universals and concluded that the head-
modifier relationship is more universal. PM (Ball, 1991), the predecessor to Double R
Grammar, agreed with Kintsch in accepting the predicate-argument relationship as basic.
Double R Grammar accepts that both the predicate-argument relationship and head-
modifier relationship are important, arguing that the predicate-argument relationship is
fundamentally about the encoding of relational meaning, whereas the head-modifier
relationship is fundamentally about the encoding of relational types. In addition, Double
R Grammar distinguishes the specifier-head relationship from the head-modifier
relationship and argues that the specifier-head relationship is the locus for the encoding
of referential meaning.

According to Kintsch,

the meaning of a simple sentence can be represented by a complex
proposition…consisting of a predicate with several arguments, time and
place circumstances and optional modifiers. Predicates are relational
terms, frequently expressed in language as verbs, adjectives, or adverbs.
Each predicate is characterized by a predicate frame that specifies how
many and which arguments that predicate takes. A verb frame, for
instance, may specify that a particular verb must have an agent, an object,
and an optional goal, with restrictions on these categories, such that the
agent must be human, or the goal must be a location. Not only can
concepts be arguments, but a proposition may have as an argument
another embedded atomic proposition. Sentence connectives, for instance,
are predicates that require propositions as arguments. Circumstances refer
to the whole propositional frame, specifying place and time. All
propositional elements may be modified by additional atomic propositions.
(1998, p. 54-55).

The general schema for complex propositions is given by

 Category (action, event or state):
 Predicate:

43

 Arguments (agent, object, source, goal,…);
 Modifiers
 Circumstance:
 Time:
 Place:

(ibid., p.38).

Using this schema, Kintsch represents the sentence “Yesterday, Mary gave Fred the old
book in the library” as

 Action:
 Predicate: GIVE
 Arguments:
 Agent: MARY
 Object: BOOK
 Modifier: OLD
 Goal: FRED
 Circumstance:
 Time: YESTERDAY
 Place: LIBRARY

(ibid., p.38)

Kintsch acknowledges that these propositional representations do not capture the full
complexity of meaning expressed in language, but argues that they capture those aspects
of meaning which are relevant for various theoretical and experimental purposes. “The
choice of which sentence properties to represent in the propositional notation is
pragmatic. Whatever seems of little importance for a given theoretical or experimental
purpose is omitted.” (1998, p. 39).

Using an even more basic schema

predicate[argument,argument,…]

Kintsch provides the following propositional representation for the sentence “the blood
returns to the heart quickly”

 QUICK[RETURN[BLOOD,HEART]]

The capitalized words in these representations are intended to represent unambiguous
concepts, not ambiguous lexical items. Specifiers like “the” and the tense of the verb are
simply ignored. In this more basic representation, the modifying relationship between
“quickly” and “return” is represented in the same manner as the predicate-argument
relationship between “return” and “blood” with no indication of which element is the
head in each case (i.e., “return” in both cases). Note that “quickly” and “quick”

44

apparently map to the same concept QUICK. In the basic representation, the role of the
arguments (e.g., agent, patient) is not explicitly represented, nor are any semantic feature
restrictions (e.g., human) on the concept functioning as the agent.

By comparison, the representations in Double R Grammar are explicitly linguistic. They
do not abstract away from the linguistic context. In particular, the meaning of specifiers is
explicitly represented in terms of their referential function and tense and aspect are not
ignored. Double R Grammar based representations contain actual and ambiguous lexical
items which are disambiguated via the associations they invoke with other lexical items
and in terms of the objects and relations to which they refer. In this respect, Double R
Grammar extends Kintsch’s arguments against the existence of word senses (Kintsch
2001) to the existence of abstract concepts and propositions as well. There must be a
perceptual basis, whether linguistic or not, for all concepts and propositions. If that
perceptual basis is linguistic, then it is explicitly linguistic, not conceptual.

In C-I Theory, the basic mechanism for showing the relationships between propositions
in a propositional network is via conceptual argument overlap. Since the arguments are
represented by unambiguous concepts, determining argument overlap simply involves a
comparison for concept equality. Given the linguistic basis of representations in Double
R Grammar, argument descriptions are unlikely to match and the mechanism of argument
overlap is not available. For example, arguments are typically first introduced with an
indefinite description and subsequently referred to by definite descriptions which may
consist of no more than a pronoun. In place of argument overlap, it is the determination
that two object referring expressions (or situation referring expressions) refer to the same
object (or situation) that establishes the association.

It is not claimed that Double R Grammar has a completely worked out theory of
reference, anaphora resolution, lexical disambiguation, structural disambiguation, etc.
However, in not abstracting away from the linguistic input, Double R Grammar offers the
prospect for extension to handle these aspects of meaning more completely. C-I Theory
can likewise be extended to handle more subtle aspects of linguistic meaning, but doing
so will require less and less abstraction from the linguistic input. The big first step for C-I
Theory is to do away with the abstract concepts and propositions that have served it so
well to date. Kintsch has already gone some ways in this direction in advocating the
abolition of distinct word senses.

The Adaptive Control of Thought – Rational

The Adaptive Control of Thought – Rational (ACT-R) cognitive architecture is a theory
of cognition based on decades of psychological research (Anderson, 1976, 1983, 1993;
Anderson and LeBiere, 1998; Anderson et al., 2002). Since 1993, a computer simulation
of the ACT-R architecture (developed by Anderson and his colleagues) has been made
available to the research community to support the development of computational
cognitive models that explore the theory. The ACT-R simulation is referred to herein as
the ACT-R cognitive modeling environment. The ACT-R cognitive architecture and

45

modeling environment is being used by researchers around the globe to develop and test
cognitive models covering a wide range of behaviors. The ACT-R architecture includes a
production system integrated with a declarative memory (DM) system. The distinction
between procedural memory and DM is a cornerstone of ACT-R and is supported by
extensive empirical evidence. ACT-R is a hybrid architecture which provides symbolic
productions and declarative memory chunks and subsymbolic mechanisms for production
selection and declarative memory chunk retrieval. Production selection and declarative
memory chunk retrieval are implemented as highly parallel processes, however, once
selected, production execution is serial—only one production can be executed at a time—
and only one declarative memory chunk is retrieved. These symbolic and subsymbolic
components and mechanisms (as implemented in the cognitive modeling environment)
provide the cognitive infrastructure needed to model human behavior at a low enough
grain size to model the time course of cognition at the millisecond level. This makes it
possible to model real-time human performance in the ACT-R cognitive modeling
environment.

ACT-R Version 5 extends the ACT-R architecture, adding a perceptual-motor system for
interacting with the external world which has been incorporated into the cognitive
modeling environment. The perceptual-motor system of ACT-R 5.0 makes it possible to
develop embodied models of cognition. With the addition of the perceptual-motor
system, ACT-R has evolved into a theory of the mind that consists of multiple modules
and is concerned with explaining how these modules are integrated to produce behavior.
Thus, ACT-R has transitioned from a “unified theory of the mind” focused on higher
level cognition to an “integrated theory of the mind” that encompasses perception and
motor action in addition to higher level cognition.

The production system is the heart of the ACT-R architecture and is responsible for
coordinating the activities of the other modules. The basic cycle of cognition in ACT-R
involves the selection and execution of a production. This cycle is assumed to take at
least 50 msec to complete. A production is a learned condition-action rule. Production
selection involves the matching of the conditions of all productions in procedural
memory in parallel and selection of a single production for execution. The execution of a
production completes the action side of the condition-action rule. The production system
interfaces with the other modules via a collection of buffers. It is the information in these
buffers which is matched against the condition side of each production during the
production selection process.

The ACT-R architecture in depicted in Figure 24 below.

46

Figure 24 The ACT-R Architecture

The production system interfaces with the intentional system via the goal buffer, with the
declarative memory system via the retrieval buffer, with the vision system via the vision
buffer (actually a visual object buffer and a visual location buffer) and with the motor
system via the manual buffer. The intentional and declarative memory systems are
internal cognitive systems (along with the production system), whereas the vision and
motor systems interface with the external world.

At any point in time, the information stored in the buffers determines which productions
are eligible for selection and execution. Production execution may in turn cause the
information in the buffers to change via creation of a new goal, retrieval of a new
declarative memory chunk, shifting of attention to change the contents of the visual
buffer or effecting a motor action.

There are several key equations that determine the subsymbolic behavior of ACT-R. The
two most important equations are the activation equation and the production utility
equation. The activation equation establishes the activation of declarative memory

GoalGoal

Productions

IntentionsIntentions

Declarative
Memory

Declarative
Memory

MotorVision

WorldWorld

VisionVision ManualManual

RetrievalRetrieval

47

chunks and determines which declarative memory chunk will be retrieved from memory
and placed in the retrieval buffer:

σ+++= ∑∑ ki
k

kji
j

jii MPSWBA
Ai = total activation of declarative chunk i

Bi = base level activation of a declarative memory chunk independent of activation from
the goal chunk based on the history of use of the chunk

∑jWjSji = activation of declarative memory chunks by the current goal chunk based on

the number of slots Sji in the goal chunk which match the declarative memory chunk and

on the weight Wj accorded each slot.

∑PkMki = activation of declarative memory chunks by the retrieval template where

Pk is the importance of a slot in the retrieval template and Mki is the degree of match of
the slot in the retrieval template to a slot in the declarative memory chunk.

σ = noise which adds stochasticity to the activation equation

The production utility equation determines the likelihood that the selection and execution
of a procedure will lead to the achievement of the current goal. Like the declarative
memory retrieval process, the production selection process occurs in parallel across all
productions and the production with the highest utility is selected and executed:

Ui = PiG – Ci + σ

Ui = utility of ith production
G = value of goal the production is meant to facilitate
Pi = probability of success of goal given the execution of production i
Ci = cost of using production i to achieve goal

σ = noise which adds stochasticity to the production utility equation

ACT-R provides a collection of parameters for setting the values of the variables in these
(and other) equations, but many of the parameters come with default values that are well
established and typically accepted.

ACT-R is a general cognitive architecture that was not specifically designed to support
language comprehension. However, to the extent that language comprehension uses
general cognitive and perceptual capabilities and is not a distinct, separate module of the
mind, ACT-R is a reasonable architecture for modeling language comprehension systems.
More specifically, to the extent that language comprehension makes use of the production

48

system, the declarative memory system, and the intentional system for the higher-level
processing of language, and to the visual (and/or aural) system for lower-level perception
of language, ACT-R is an appropriate architecture. Double R Theory assumes that
language comprehension does not involve a separate and distinct language (or syntax)
module, and that ACT-R is in fact an appropriate architecture.

Of course, language comprehension systems must actually be implemented in the ACT-R
cognitive modeling environment that simulates the ACT-R architecture, and the specific
commitments of the cognitive modeling environment (as opposed to the architecture)
impose additional constraints. For example, it is unclear if the highly parallel declarative
memory activation and production selection processes can be efficiently implemented on
a serial computer, and efficiency concerns may have impacted the implementation of
these processes in the cognitive modeling environment. The spreading activation
mechanism, as reflected in the activation equation of the ACT-R architecture, could have
been implemented as in the C-I Theory as a settling process involving all the chunks in
declarative memory. However, Kintsch (1998) notes that the amount of time required for
a matrix of activations to settle is indeterminate. Given the commitment of the ACT-R
cognitive modeling environment to be able to model the time course of behavior at the
millisecond level, implementation of a settling mechanism over all of declarative memory
was not feasible. In fact, C-I Theory cannot be used to model the time course of
comprehension (in real-time) for precisely this reason. Instead of implementing a settling
mechanism operating over declarative memory, the spreading activation mechanism of
ACT-R is limited to spread from the slots in the goal chunk in the goal buffer to matching
declarative memory chunks. Some empirical support has been provided for this
implementation decision. For example, Anderson (1993) notes the lack of priming effects
between indirectly related words like “bull” and “milk” (indirectly associated via “cow”)
in arguing for the approach to spreading activation adopted in ACT-R 5.0. However, the
single level spread of activation makes it difficult to model even basic priming effects
(e.g., Meyer & Schvaneveldt, 1971) in the ACT-R cognitive modeling environment since
all associates must be directly associated via their slot values and for other than extremely
restricted data sets this leads to an unreasonable proliferation of the number of slots in the
associated declarative memory chunks (e.g., think of all the possible associates of
“cow”). The result is a strong a priori constraint on the possible forms of representation.
Any two declarative memory chunks that are associated must share slot values in order to
spread activation. The ACT* architecture that preceded ACT-R (Anderson, 1983),
supported multiple level spread of activation and did not impose this constraint.

The use of the goal chunk as the locus for spreading activation is only one of the
functions of this overloaded element of the ACT-R cognitive modeling environment. In
addition to functioning as the source for spreading activation and representing the
intentional component of ACT-R, the goal buffer is the locus for the creation of abstract
declarative memory chunks and is one of the key determinants of the production selection
process. Objects attended to in the visual buffer of ACT-R become perceptual chunks in
declarative memory and these perceptual chunks can subsequently be retrieved and
placed in the retrieval buffer. But the mechanism for creating abstract, conceptual chunks
is the creation of a new goal. For example, whereas the visual buffer is the locus for the

49

creation of perceptual chunks corresponding to words as visual objects, the creation of a
word chunk which abstracts from the perceptual form of the word (i.e., particular font,
size, location, orientation, etc.) requires creation of a new goal to represent that
abstraction. But there is a basic conflict between the function of the goal for production
selection and its function to create declarative memory chunks. It is common in ACT-R
based cognitive models to include state information in the goal chunk to guide production
selection. For example, use of a “state” slot in the goal chunk to encode the current state
(or context) is quite common. However, such state information is not appropriate for the
creation of abstract declarative memory chunks which are abstracted from the particular
contexts of use. Each abstract declarative memory chunk created will retain this state
information and there is no mechanism for the state information to decay more rapidly
than the relevant information. Further, since the type of a declarative memory chunk must
be declared when the cognitive model is created, the declaration of the chunk type will
include slot declarations for the irrelevant state information (e.g., a procedural “state” slot
in a declarative memory chunk of type “noun”).

In Double R Theory, abstract categories and schemas are learned from experience of
specific instances of those categories and instantiations of those schemas. The abstraction
mechanism may or may not be goal directed. Even if goal directed, it probably does not
involve the instantiation of the abstraction as the goal itself. If the intent (or goal) is to
create an abstraction, it is hard to see how that abstraction can be (or become) the goal.

As a production system, the ACT-R cognitive modeling environment provides a
mechanism for the selection and execution of productions in a forward chaining manner.
No mechanism for backward chaining or backtracking is provided. The ACT-R cognitive
modeling environment provides limited pattern matching capabilities primarily limited to
determining that the values of the slots in two different declarative memory chunks are
equal or different or to matching a value in the slot of one declarative memory chunk to a
variable slot in another declarative memory chunk. The ACT-R cognitive modeling
environment does not support the matching of two variable slots together and does not
support the matching of substructures in slots, matching only on the names of such
structures. Thus, the ACT-R cognitive modeling environment has only an extremely
limited unification capability. The ACT-R cognitive modeling environment provides
support for single inheritance, allowing declarative memory chunks to be organized into a
type hierarchy, but does not support multiple inheritance. Earlier versions of ACT-R had
a goal stack that is replaced by a single goal buffer in ACT-R Version 5. The goal stack
provided a mechanism for controlling behavior by supporting the pushing of the current
goal and introduction of a subgoal and the subsequent popping of the subgoal and
reinstatement of the previous goal.

Distinguishing limitations of the cognitive modeling environment from the underlying
architectural theory is somewhat problematic, although in some cases the distinction is
clear. The elimination of the goal stack is theoretically motivated. In removing the stack,
it was argued that the goal stack was too powerful in certain respects (e.g., its unbounded
depth, its perfect memory) and that goals should be stored in declarative memory and not
in a separate memory stack. (Anderson et al., 2002; Altmann and Trafton, 2002). On the

50

other hand, the lack of multiple inheritance is clearly a limitation of the cognitive
modeling environment which is not based on any theoretical considerations that this
author is aware of. The limited pattern matching capabilities of the cognitive modeling
environment probably reflects its implementation in Lisp as opposed to Prolog, although
Prolog’s full unification capability is psychologically too powerful. The lack of
backtracking is another reflection of the underlying implementation language, but
psychological limits on backtracking are well attested in any case. Overall, the developers
of the ACT-R cognitive modeling environment have been very successful in not allowing
that environment to negatively impact the underlying architectural theory which is firmly
based on psychological research and not tied to implementation decisions. And despite
the limitations of the ACT-R cognitive modeling environment, it is the best available
environment for the development of computational cognitive models and the ACT-R
architecture is the best available theory of human cognition.

Double R Model: The Computational Psycholinguistic
Implementation

In the mid-eighties when this research started, Lisp and Prolog were the dominant
programming languages for the implementation of language processing systems within
the Computational Linguistics and Artificial Intelligence community of which the author
was a member. PM, the predecessor of Double R Model, was implemented in Prolog over
the course of six years prior to the end of 1991 (Ball, 1991). PM relied extensively on
Prolog’s unification and backtracking capabilities. While Lisp and Prolog offer powerful
capabilities to support the development of language processing systems, consideration of
psychological constraints on language processing was generally not a concern, and these
languages were too powerful in certain respects. The emergence of Soar in the late
eighties/early nineties and the more recent emergence and availability of ACT-R—
cognitive modeling environments with an explicit psychological basis—now facilitate the
implementation of computational psycholinguistic models of language processing (and
computational cognitive models more generally)—although it is yet to be demonstrated
that these models can scale up to the level of Computational Linguistic or AI systems.

Double R Model is implemented using the ACT-R 5.0 cognitive modeling environment
(Anderson & LeBiere, 1998; Anderson et al. 2002). Unlike typical computational
psycholinguistic models which tend to focus on specific linguistic issues (e.g., the
processing of garden-path sentences, lexical disambiguation, the effect of verb argument
preferences on language processing), Double R Model is intended as the basis for the
development of large-scale, functional language comprehension systems. In this regard, it
is perhaps better viewed as a computational linguistic system with a focus on
psychological plausibility than as a purely psycholinguistic system.

Double R Model is currently capable of processing an interesting range of grammatical
constructions including: 1) intransitive, transitive and ditransitive verbs; 2) verbs taking
clausal complements; 3) predicate nominals, predicate adjectives and predicate
prepositions; 4) conjunctions of numerous grammatical types; 5) modification by
attributive adjectives, prepositional phrases and adverbs, etc. On the other hand, there are

51

numerous grammatical forms that are not yet handled (e.g., relative clauses, various types
of reduced clausal form, contextually determined prepositional phrase attachment).
Double R Model accepts as input as little as a single word or as much as an entire chunk
of discourse (if the model stops in the middle of a text, it’s a bug not a feature).
Unrecognized words are simply ignored. Unrecognized grammatical forms result in
partially analyzed text, not failure. Although Double R Model can process an entire
discourse, it does not yet attempt to establish connections between the pieces of that
discourse (via anaphora resolution, topic identification, pragmatic inferences, etc.). The
model currently constructs representations of relational meaning and identifies referring
expressions. The model lacks a mechanism for the construction of a situation model to
referentially ground the representations and does not yet provide a grounded
implementation of referential meaning. The model currently performs only limited lexical
and structural disambiguation. It is not yet clear if the single level spreading activation
mechanism of ACT-R 5.0 will prove adequate to support lexical and structural
disambiguation. Integration of a spreading-activation mechanism like that available in C-
I Theory (Kintsch 1998) could overcome this concern. The model lacks a backtracking
mechanism for recovering from mistaken analyses, even when such backtracking is
supported by empirical evidence (e.g., garden-path sentences). Automated techniques for
scaling up the model to handle real-world input are under investigation, including the use
of LSA, WordNet, FrameNet, and CYC for this purpose (See References for links to
relevant websites).

Inheritance and limited pattern matching as an alternative to and
improvement on full unification

Unification allows for the unbounded, recursive matching of two logical representations.
Unification is an extremely powerful pattern matching technique used in many language
processing systems based on Prolog. Unfortunately, it is psychologically too powerful.
For example, the following two logical expressions can be unified

 p(a,B,c(d,e,f(g,h(i,j),K),l))

p(X,b,c(Y,e,f(Z,T,U),l))

where capitalized letters are variables and lowercase letters are constants. Humans are
unlikely to be capable of performing such unifications consciously or otherwise without
significant effort and an external scratch pad to retain the large number of bindings
involved.

On the other hand, although extremely powerful, unification does not support the
matching of types to subtypes. Thus, if we have a verb type with intransitive and
transitive verb subtypes, unification cannot unify a chunk of type verb with a chunk of
type intransitive verb or transitive verb. Unification’s inability to match types to subtypes
often results in a proliferation of rules (or conditions on rules) to handle the various
combinations (PM fell victim to this limitation of unification). For example, the verb type
can be variablized and a test for the valid types can be used to constrain the variable (e.g.,
Verb-Type equal verb or Verb-Type equal intrans-verb or Verb-Type equal trans-verb).

52

With inheritance, a production that checks for a verb type will also match a transitive
verb and an intransitive verb type (assuming an appropriate inheritance hierarchy).
Humans appear to be able to use types and subtypes in appropriate contexts with little
awareness of the transitions. For example, when processing a verb, all verbs (used
predicatively) expect to be proceeded by a subject, but only transitive verbs expect to be
followed by an object. Thus, humans presumably have available a general production that
applies to all verbs (or even all predicates) which will look for a subject preceding the
verb, but only a more specialized production for transitive verbs (or transitive predicates)
which will look for an object following the verb.

Inheritance supports the matching of two representations without requiring the recursive
matching of their subparts so long as the types of the two representations are compatible.
Types are essentially an abstraction mechanism which makes it possible to ignore the
detailed internal structure of representations when comparing them. For example, once
the model has identified an expression as an object referring expression, the model can
match the object referring expression against productions without consideration of the
internal structure of the object referring expression. Of course, there may be productions
that do consider the internal structure, but types are useful here as well. Instead of having
to fully elaborate the internal structure, types can be used to partially elaborate that
structure. For example, if a production is specifically concerned with object referring
expressions headed by a quantifier (e.g., “some of the books”), the production can check
to see that the head is of the appropriate type, providing a (limited) unification like
capability where needed.

In sum, ACT-R’s inheritance and pattern matching capabilities provide a psychologically
plausible alternative to a full unification capability.

Context accommodation as an alternative to and improvement on
backtracking

Context accommodation is a mechanism for changing the function of an expression based
on the context without backtracking. For example, when an auxiliary verb like “did”
occurs it is likely functioning as a predicate specifier as in “he did not run” where the
predicate is “run” and “did not” provides the specification for that predicate. However,
auxiliary verbs may also function as predicates when they are followed by a noun phrase
as in “he did it”. Determining the ultimate function of an auxiliary verb can only be made
when the expression following the auxiliary is processed. In a backtracking system, if the
auxiliary verb is initially determined to be functioning as a predicate specifier, then when
the noun phrase “it” occurs, the system will backtrack and reanalyze the auxiliary verb,
perhaps selecting the predicate function on backtracking. However, note that
backtracking mechanisms typically lose the context that forced the backtracking. Thus,
on backtracking to the auxiliary verb, the system has no knowledge of the subsequent
occurrence of a noun phrase to indicate the use of the auxiliary verb as a predicate. Thus,
the system can only randomly select a new function for the auxiliary verb which may or
may not be that of a predicate.

53

A better alternative is to accommodate the function of the auxiliary verb in the context
which forces that accommodation. In this approach, when the noun phrase “it” is
processed and the auxiliary verb functioning as a predicate specifier is retrieved, the
function of the auxiliary verb can be accommodated in the context of a subsequent noun
phrase to be a predicate. Context accommodation avoids the need to backtrack and allows
the context to adjust the function of an expression just where that accommodation is
supported by the context.

Feature Projection

Feature projection provides a mechanism for projecting lower level features up to the
level at which they are needed for such things as resolving the referent of an object
referring expression or determining the semantic category of an object or relation. This
makes it possible for the root node of a deeply nested meaning structure to contain the
feature information needed for subsequent processing without the need to traverse the
structure to find that information. Thus, the root node of the expression “the books” will
have the [definite] feature to indicate that this expression is a definite referring expression
and there is no need to traverse the structure to the representation of “the” in order to find
this feature. The root node will also have the features [plural] and [book] to support
reference identification.

Since it is possible for the features of expressions being combined to conflict some
mechanism is needed for determining which feature projects when a conflict occurs. The
following feature projection hierarchy is proposed: specifier > head > modifier. That is,
specifier features dominate head features which dominate modifier features. For example,
in the expression “the books” the specifier “the” has the feature [definite] whereas the
plural noun “books” has the feature [indefinite]. The definiteness feature of the specifier
projects to the overall expression and the expression “the books” is [definite].

Feature projection is currently only a projected feature of the model. However, it is
expected to be important for tying the linguistic representations to a situation model and
for discourse processing more generally.

Use of a Context Chunk and a Chunk Stack

The current ACT-R cognitive modeling environment provides only the goal and retrieval
buffers (and perhaps the visual and aural buffers) to store the partial products of language
comprehension. The lack of a goal stack is particularly constraining, since a stack is the
primary data structure for managing the kind of (limited) recursion that occurs in
language. The key issue is the need to retain linguistic chunks in short-term working
memory until they can be combined with other linguistic chunks. For example, in
processing the phrase “the big ball”, the word “the” is processed first and recognized as a
determiner. Determiners typically function as specifiers and combine with heads to form
object referring expressions and the specifier must be retained in short-term working
memory until the head is available to combine with it. The word “big” is processed
second and recognized as an adjective functioning as a modifier. Modifiers combine with

54

heads to form modified heads. The modifier must be retained in short-term working
memory unit the head is available. Finally, the word “ball” is processed and determined
to be a noun that can function as the head of an object referring expression. The modifier
is retrieved from short-term working memory and combined with it to form a modified
head. Then, the specifier is retrieved from short-term working memory and combined
with the modified head to form an object referring expression. Note that there must be
some mechanism for retrieving previously processed words from short-term working
memory in last-in/first-out order during processing (subject to various kinds of error that
can occur in the retrieval process). A stack provides this (essentially error free)
capability. It is expected that a capacity to maintain about 5 separate linguistic chunks in
short-term working memory is needed to handle most input—supporting at least one level
of recursion (and perhaps two for the more gifted). The goal chunk could be adapted for
this purpose, except that it is also the basis for creation of new declarative memory
chunks and activation spread and these architectural needs would conflict. Further, it
would be difficult to get the kind of stack like behavior needed out of the slots in the goal
chunk.

To overcome these problems, Double R Model introduces a context chunk containing a
bounded, circular stack of links to declarative memory. As chunks are stacked in the
circular stack, if the number of chunks exceeds the limit of the stack, then new chunks
replace the least recently stacked chunks (supporting at least one type of short-term
working memory error). The actual number of chunks allowed in the stack is specified by
a global parameter. This parameter is settable to reflect individual differences in short-
term working memory capacity. Chunks cannot be directly used from the stack. Rather,
the stack is used to provide a template for retrieving the chunk from declarative memory.
Essentially, the chunk on the stack provides a link to the corresponding declarative
memory chunk. Since the chunk must be retrieved from declarative memory before use,
the spreading activation and partial matching mechanisms of ACT-R are not
circumvented as they were when popping goals off the goal stack (as in earlier versions
of ACT-R) and retrieval errors are possible. Thus, the bounded, circular stack of links to
declarative memory avoids the arguments against the goal stack of earlier versions of
ACT-R, adds the insight of activated pathways to declarative memory, and retains the
insights that motivated the inclusion of a goal stack in earlier versions of ACT-R.

The chunk stack is one element of a context chunk which is more generally used to
separate out state information from the goal chunk. Since the goal chunk is the basis for
creating new declarative memory chunks, storing the chunk stack in it would result in the
chunk stack being stored with each new declarative memory chunk. While this might be
used to support a kind of episodic memory where the context in which a word occurs is
stored with the declarative memory chunk created during the processing of the word,
ACT-R 5.0 does not currently provide a mechanism for transitioning episodic memory
into semantic memory (i.e., abstracting from the context of use), and storing the context
with a chunk has undesirable side-effects within the ACT-R cognitive modeling
environment (e.g., it interferes with the spreading activation mechanism). To avoid such
problems a separate context chunk is maintained and made available to all productions.
Although, the existence of a separate context chunk that productions match to violates the

55

ACT-R 5.0 architecture where only the buffers are supposed to be used for this purpose,
earlier versions of ACT-R allowed multiple chunks to be matched on the left-hand side of
productions and this functionality is still available in ACT-R 5.0 cognitive modeling
environment.

The context chunk maintains several pieces of information in addition to the chunk stack.
Its definition (as specified by a chunk-type) in the model is shown below:

(chunk-type context state rel-context sit-context text-context word
prev-word-1 prev-word-2 repeat chunk chunk-stack)

;; state =
;; retrieve-prev-chunk | -- previous chunk has been retrieved
;; process | -- process, default is to retrieve previous chunk
;; add-chunk-to-stack | -- add goal chunk to stack
;; add-chunks-to-stack | -- add goal and retrieval chunks to stack
;; ref-context = (referential context)
;; none | -- no context identified
;; obj | -- object context identified (e.g., following obj-spec)
;; pred | -- predicate context identified (e.g., following pred-spec)
;; sit -- situation context identified
;; (e.g., following conjunction where first conjunct is sit-refer-
expr)
;; sit-context = (situation context)
;; decl | -- declarative
;; yes-no-ques | -- yes-no-question
;; wh-ques | -- wh-question
;; imp | -- imperative
;; rel-clause | -- relative clause
;; passive | -- passive declarative
;; text-context = (text context)
;; end-of-text -- end of text
;; word -- current word (used for activation spread)
;; prev-word-1 -- previous word (used for activation spread)
;; prev-word-2 -- word before previous word (used for activation
spread)
;; repeat =
;; yes |
;; no |
;; no-more
;; chunk -- current chunk
;; chunk-stack -- chunk stack

In this chunk-type definition, context is the name of the chunk, state is a slot that
provides state information to guide production selection, ref-context is a slot that
identifies the current referential context (typically determined by a specifier), sit-
context is a slot that contains information about the current situation context, text-
context is a slot that contains information about the larger discourse context, word
contains the lexical item being processed, word-prev-1 and word-prev-2 contains the
previous two words processed, repeat is yes if the word has been attended to previously
and no-more if there are no more words in the input, chunk contains the most recently
processed chunk, and chunk-stack contains the entire chunk stack.

56

In the ACT-R 5.0 cognitive modeling environment, only the goal chunk spreads
activation to declarative memory. Since the context chunk contains contextually
relevant information, it would be nice if it also spread activation (e.g., from the word,
prev-word-1 and prev-word-2 slots). Unfortunately, this is not currently supported and
an appropriate work around has not yet been developed.

Type Hierarchy

The importance of inheritance in the model was noted above. Key elements of the current
hierarchy of types is shown below with subtypes indented to the right of parent types. All
subtypes are of type top-type, the base type. There are five general types: lexical-
type, referential-type, referring-expression-type, relational-type, and
punctuation-type.

Top-type

Lexical-type
 Pronoun
 Poss-pronoun
 Proper-noun
 Noun
 Adjective
 Verb
 Intransitive-verb
 Transitive-verb
 Ditransitive-verb
 Verb-subj-sitcomp (i.e., verb that takes

a situation complement)
Verb-subj-iobj-sitcomp (i.e., verb that takes an
 indirect object and a situation complement)
Verb-subj-iobj-obj-sitcomp (i.e., verb that takes two
 objects and a situation complement)

 Preposition
 Adverb
 Determiner
 Quantifier
 Auxiliary
 Modal-Auxiliary
 Regular-Auxiliary
 Semi-Auxiliary
 Negative
 Not-negative (i.e., “not”)

Referential-type
 Head
 Object-head
 Relational-head
 Specifier
 Object-specifier
 Poss-object-specifier
 Quantified-object-specifier
 Predicate-specifier
 Modifier
 Object-modifier (i.e., pre-head modifier)

57

 Post-modifier (i.e., post head modifier)
 Relation-modifier
 Predicate-modifier
 Situation-modifier
 Specifier-modifier
 Predicate-specifier-modifier
 Object-specifier-modifier
Complement

Referring-expression-type
 Object-referring-expression
 Predicate-referring-expression
 Situation-referring-expression
 Location-referring-expression
 Direction-referring-expression

Relation-type
 Predicate
 Argument
 Function
 Term
 Coordinator

 Punctuation

The more specialized a production is, the more specialized the types of the chunks in the
goal and retrieval buffers will be. The most general productions match a goal chunk
whose type is top-type and ignore the retrieval buffer chunk.

Default Rules

The ACT-R cognitive modeling environment’s single inheritance mechanism can be
combined with the P parameter (P in the U = PG – C production utility equation) to
establish default rules. For example, since all types extend a base type (i.e., top-type),
by using the base type as the value of the goal chunk in a production combined with a P
value for the production that is lower than competing productions, the production will
function as a default production which is only selected if no more specific production
matches. A sample default production is shown below:

 (p process-default--retrieve-prev-chunk
 =goal>
 ISA top-type
 =context>
 ISA context
 state process
 chunk-stack =chunk-stack
 =chunk-stack>
 ISA chunk-stack-chunk
 this-chunk =chunk
 prev-chunk =prev-chunk
 ==>
 =context>
 state retrieve-prev-chunk

58

 chunk-stack =prev-chunk
 +retrieval> =chunk
)
 (spp process-default--retrieve-prev-chunk :p 0.75)

This default production causes the previous chunk to be retrieved from declarative
memory if no other production is selected. Note that the production accesses the chunk-
stack in the context chunk (via the =chunk-stack variable) and uses the value of the
this-chunk slot (represented by the variable =chunk) to specify a retrieval from
declarative memory (+retrieval> =chunk). The production does not use the value of
this-chunk directly. To make this production a default production, the P parameter is set
using the spp (set production parameter) command to a value of 0.75 (the default value
for P is 1.0). The P parameter determines the likelihood of a goal succeeding if the
production is executed. Default productions like this one are only likely to be selected
and executed is there is no more specialized production available.

Lexical and Functional Entries

The lexical entries in the model provide a limited amount of information which is stored
in the word and word-info chunks. The definition of the word and word-info chunk
types are provided below:

(chunk-type word word-form word-marker)
(chunk-type word-info word-marker word-root word-type word-subtype
word-morph-type)

The word-form slot of the word chunk contains the physical form of the word
(represented as a string in ACT-R); the word-marker slot contains an abstraction of the
physical form. The word-root slot contains the value of the root form of the word. The
word-type slot contains the lexical type of the word and is used to convert a word-info
chunk into a lexical-type chunk for subsequent processing. A word-subtype slot is
provided as a workaround for the lack of multiple inheritance in ACT-R 5.0. The word-
morph-type slots supports the encoding of additional grammatical information (although
that information is not currently being used).

Sample lexical entries for a pronoun, noun, verb participle, adjective, adverb, auxiliary,
preposition, determiner, and quantifier are provided below:

 (he-wf isa word
 word-form "he"
 word-marker he)
 (he isa word-info
 word-marker he
 word-root he
 word-type pronoun)

 (cow-wf isa word
 word-form "cow"
 word-marker cow)

59

 (cow isa word-info
 word-marker cow
 word-root cow
 word-type noun
 word-morph-type third-per-sing)
 (cows-wf isa word
 word-form "cows"
 word-marker cows)
 (cows isa word-info
 word-marker cows
 word-root cow
 word-type noun
 word-morph-type third-per-plur)

 (running-wf isa word
 word-form "running"
 word-marker running)
 (running isa word-info
 word-marker running
 word-type verb
 word-root run
 word-subtype intrans-verb
 word-morph-type pres-part)

 (rapid-wf isa word
 word-form "rapid"
 word-marker rapid)
 (rapid isa word-info
 word-marker rapid
 word-type adjective)

 (quickly-wf isa word
 word-form "quickly"
 word-marker quickly)
 (quickly isa word-info
 word-marker quickly
 word-type adverb)

 (is-aux-wf isa word
 word-form "is"
 word-marker is)
 (is-aux isa word-info
 word-marker is
 word-root be
 word-type reg-aux)

 (on-wf isa word
 word-form "on"
 word-marker on)
 (on isa word-info
 word-marker on
 word-type preposition)

 (the-wf isa word
 word-form "the"
 word-marker the)

60

 (the isa word-info
 word-marker the
 word-type determiner)

 (all-wf isa word
 word-form "all"
 word-marker all)
 (all isa word-info
 word-marker all
 word-type quantifier)

Note that there is no indication of the functional roles (e.g., head, modifier, specifier) that
particular lexical items may fulfill. Following conversion of word-info chunks into
lexical-type chunks (e.g., verb, adjective), functional roles are dynamically
assigned by the productions that are executed during the processing of a piece of text.
Since functional role chunks are dynamically created, only chunk-type definitions exist
for functional categories prior to that processing. As an example of a chunk-type
definition for a functional category, consider the category pred-trans-verb (i.e.,
transitive verb functioning as a predicate) whose definition involves several
hierarchically related chunk-types as shown below:

(chunk-type top-type head)
(chunk-type (rel-type (:include rel-top-type)))
(chunk-type (pred-type (:include rel-type)) subj spec mod post-mod)
(chunk-type (pred-trans-verb (:include pred-type)) obj)))

The top-type chunk-type contains the single slot head. All types that are subtypes of
top-type inherit the head slot. Rel-type is a subtype of rel-top-type that doesn’t add
any additional slots. Pred-type is a subtype of rel-type that adds the slots subj, spec,
mod, and post-mod. It is when a relation is functioning as a predicate that these slots
become relevant. Pred-trans-verb is a subtype of pred-type that adds the slot obj.
Summarizing, pred-trans-verb contains the slots head, subj, spec, mod, post-mod,
and obj, all of which are inherited for parent types except for obj.

The following production creates an instance of a pred-trans-verb and provides initial
values for the slots:

(p process-verb--convert-to-pred-trans-verb
 =goal>
 ISA verb
 head =verb
 subtype trans-verb
 =context>
 ISA context
 state convert-verb-to-pred-verb
 ==>
 +goal>
 ISA pred-trans-verb
 subj none
 spec none
 mod none

61

 head =goal
 post-mod none
 obj none
 =context>
 state retrieve-prev-chunk
)

In this production, a verb (subtype of lexical-type) whose subtype slot has the value
trans-verb is converted into a pred-trans-verb for subsequent processing. The only
slot of pred-trans-verb that is given a value other than none is the head slot whose
value is set to be the goal chunk (i.e., head =goal). This production has the effect of
assigning a transitive verb the functional role of predicate (specialized as a transitive verb
predicate). Its selection and execution is based on the previous context which set the
value of the state slot of the context chunk to convert-verb-to-pred-verb and on
having a goal chunk of type verb with a subtype slot with the value trans-verb.

Productions

Sample productions were shown above in the discussion of default rules and in the
creation of functional roles. This section provides some additional examples. The read-
next-word production initiates the find-attend-encode sequence for reading the next
word from the computer screen (using ACT-R’s perceptual component).

(p read-next-word
 =goal>
 ISA word
 =context>
 ISA context
 state start
 - repeat no-more ;; no more words
 ==>
 =context>
 state find
)

Note that the goal is represented by the declarative word chunk as opposed to a more
procedurally oriented goal chunk like read-word. This is fallout from the fact that the
goal chunk is the basis for creating declarative memory chunks. The start value of the
state slot in the context chunk is the primary basis for the selection of this production
(along with the type of the goal chunk). Again, putting the state slot in the context
chunk avoids the need to encode procedural information in the goal chunk. The “-
repeat no-more” entry in the production indicates that this production only applies if
the value of the repeat slot is not (negation is indicated by the “-“) no-more where no-
more indicates that the last word in the text has already been read.

The next production uses the word-marker slot of the word chunk to retrieve the word-
info chunk.

(p retrieve-word-info

62

 =goal>
 ISA word
 word-marker =word-marker
 =context>
 ISA context
 state retrieve
 ==>
 +retrieval>
 ISA word-info
 word-marker =word-marker
 =context>
 state retrieve-word-info
)

The word-info chunk is then used to create a lexical-type chunk (e.g., verb) which
becomes the goal. The productions that convert word-info chunks into lexical-type
chunks are special in that the :effort parameter is set to 0.0. The :effort parameter
determines how long it takes a procedure to execute (default is 0.05 sec or 50 msec).
Setting the value to 0.0 means that the production takes no time to execute. The
presumption is that the procedure that effects this conversion is substituting for an
automated type conversion mechanism that the ACT-R 5.0 cognitive modeling
environment does not currently provide.

(p convert-word-to-verb
 =goal>
 ISA word-info
 word-type verb
 word-subtype =word-subtype
 =context>
 ISA context
 state convert
 ==>
 +goal>
 ISA verb
 head =goal
 subtype =word-subtype
 =context>
 state process
)
;; housekeeping only!!!
(spp convert-word-to-verb :effort 0.0)

There are a few other kinds of “housekeeping” productions which are accorded zero
effort in the model (e.g., the stack chunking procedures). In general, “housekeeping”
productions are used to effect various data manipulations that are external to the basic
processing mechanism. The process-verb--convert-to-pred-trans-verb
production discussed above is another example of a “housekeeping” production.

The next production matches a verb goal chunk and in the context of an obj (i.e., object
referring expression) converts the verb type into a rel-head type

; process verb
; - obj-context

63

(p process-verb--obj-context--convert-to-rel-head
 =goal>
 ISA verb
 head =verb
 =context>
 ISA context
 state retrieve-prev-chunk
 rel-context obj
 ==>
 +goal>
 ISA rel-head
 mod none
 head =goal
 post-mod none
)

Rel-head (i.e., relational-head) is a subtype of head. The next production matches a
head goal chunk (which could be a rel-head) and an obj-spec (i.e., object-
specifier) retrieval chunk and creates a new obj-refer-expr (i.e., object-
referring-expression) which becomes the goal. Together, these two productions
support to use of verbs as (relational) heads of object referring expressions following an
object specifier (e.g., “kick” in “the kick”).

; process head
; - obj-spec retrieved
(p process-head--prev-chunk-is-obj-spec
 =goal>
 ISA head
 =context>
 ISA context
 state retrieve-prev-chunk
 =retrieval>
 ISA obj-spec
 ==>
 +goal>
 ISA obj-refer-expr
 spec =retrieval
 mod none
 head =goal
 post-mod none
 referent none-for-now
 =context>
 state process
 rel-context none
)

The creation of an object referring expression causes the value of the rel-context slot
to be set to none indicating the end of the object referring expression context.

Processing Example

As an example of the processing of a piece of text and the creation of declarative memory
chunks to represent the meaning of the text, consider the processing of the following text:

64

 The old dog lover is asleep.

The processing of the word “the” invokes the following procedures:

 Time 0.000: Read-First-Word
 Time 0.050: Find-First-Word
 Time 0.100: Attend-Word-Option-2--Location-Retrieved
 Time 0.235: Encode-Word-Form
 Time 0.285: The-Wf Retrieved
 Time 0.285: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 0.335: Retrieve-Word-Info
 Time 0.385: The Retrieved
 Time 0.385: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 0.435: Convert-Word-To-Determiner
 Time 0.435: Convert-Determiner-To-Obj-Spec
 Time 0.435: Process--Default--Retrieve-Prev-Chunk
 Time 0.485: None Retrieved
 Time 0.485: Process-Obj-Spec--Default--Add-Chunks-To-Stack
 Time 0.535: Add-Chunks-To-Stack--Option-2
 Time 0.535: Add-Chunk-To-Stack

and the following declarative memory chunks are created:

Goal25
 isa DETERMINER
 head The
Goal26
 isa OBJ-SPEC
 head Goal25
 mod None

It takes 535 msec to process the word “the” and two declarative memory chunks are
created. The first chunk, goal25, is a determiner whose head slot has the value is The.
This chunk represents the inherent part of speech of the word “the”. The second chunk,
goal26, is an obj-spec (i.e., object-specifier) whose head slot has the value Goal25
and whose mod slot has the value none. This second chunk represents the function of
“the” in this particular text. Note that if “the” were the only word in the input text, the
creation of these two chunks would still occur since the processing mechanism works
bottom-up from the lexical items and makes no assumptions about what will occur
independently of the lexical items.

The processing of the second word “old” executes the following productions:

 Time 0.535: Read-Next-Word
 Time 0.585: Find-Next-Word-Step-1-Option-1
 Time 0.635: Attend-Word-Option-2--Location-Retrieved
 Time 0.770: Encode-Word-Form
 Time 0.820: Old-Wf Retrieved
 Time 0.820: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 0.870: Retrieve-Word-Info
 Time 0.920: Old Retrieved

65

 Time 0.920: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 0.970: Convert-Word-To-Adjective
 Time 0.970: Process-Adjective--Obj-Context
 Time 1.020: Process--Default--Retrieve-Prev-Chunk
 Time 1.070: Goal26 Retrieved
 Time 1.070: Process--Default--Add-Chunks-To-Stack
 Time 1.120: Add-Chunks-To-Stack--Option-1
 Time 1.120: Add-Chunk-To-Stack

and leads to the creation of the following declarative memory chunks:

Goal32
 isa ADJECTIVE
 head Old
Goal33
 isa OBJ-MOD
 head Goal32
 mod None

where goal32 represents the inherent part of speech of “old” and goal33 represents the
function of “old” (i.e., object-modifier) in the current context.

The processing of the third word “dog” executes the following productions:

 Time 1.120: Read-Next-Word
 Time 1.170: Find-Next-Word-Step-1-Option-1
 Time 1.220: Attend-Word-Option-2--Location-Retrieved
 Time 1.355: Encode-Word-Form
 Time 1.405: Dog-Wf Retrieved
 Time 1.405: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 1.455: Retrieve-Word-Info
 Time 1.505: Dog Retrieved
 Time 1.505: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 1.555: Convert-Word-To-Noun
 Time 1.555: Convert-Noun-To-Head
 Time 1.605: Process--Default--Retrieve-Prev-Chunk
 Time 1.655: Goal33 Retrieved
 Time 1.655: Process-Head--Prev-Chunk-Is-Modifier--Option-1
 Time 1.705: Process--Default--Retrieve-Prev-Chunk
 Time 1.755: Goal26 Retrieved
 Time 1.755: Process-Head--Prev-Chunk-Is-Obj-Spec
 Time 1.805: Process--Default--Retrieve-Prev-Chunk
 Time 1.855: None Retrieved
 Time 1.855: Process--Default--Add-Chunks-To-Stack
 Time 1.905: Add-Chunks-To-Stack--Option-2
 Time 1.905: Add-Chunk-To-Stack

and creates the following declarative memory chunks:

Goal39
 isa NOUN
 head Dog
Goal40
 isa HEAD

66

 head Goal39
 mod Goal33
 post-mod None
Goal41
 isa OBJ-REFER-EXPR
 head Goal40
 referent None-For-Now
 spec Goal26
 mod None
 post-mod None

Goal41 is a full object referring expression and contain a referent slot to support a link
to an object in the situation model corresponding to this piece of text. The model does
not currently establish the value of the referent slot since the situation model has not
yet been implemented.

The processing of the fourth word “lover” executes the following productions:

 Time 1.905: Read-Next-Word
 Time 1.955: Find-Next-Word-Step-1-Option-1
 Time 2.005: Attend-Word-Option-2--Location-Retrieved
 Time 2.140: Encode-Word-Form
 Time 2.190: Lover-Wf Retrieved
 Time 2.190: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 2.240: Retrieve-Word-Info
 Time 2.290: Lover Retrieved
 Time 2.290: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 2.340: Convert-Word-To-Noun
 Time 2.340: Convert-Noun-To-Head
 Time 2.390: Process--Default--Retrieve-Prev-Chunk
 Time 2.440: Goal41 Retrieved
 Time 2.440: Process-Head--Prev-Chunk-Is-Obj-Refer-Expr--Step-1
 Time 2.490: Process-Head--Prev-Chunk-Is-Obj-Refer-Expr--Step-2
 Time 2.490: Process-Head--Prev-Chunk-Is-Obj-Refer-Expr--Step-3
 Time 2.490: Process--Default--Retrieve-Prev-Chunk
 Time 2.540: None Retrieved
 Time 2.540: Process--Default--Add-Chunks-To-Stack
 Time 2.590: Add-Chunks-To-Stack--Option-2
 Time 2.590: Add-Chunk-To-Stack

and creates or modifies the following declarative memory chunks:

Goal47
 isa NOUN
 head Lover
Goal48
 isa HEAD
 head Goal47
 mod Goal40
 post-mod None
Goal41
 isa OBJ-REFER-EXPR
 head Goal48
 referent None-For-Now
 spec Goal26

67

 mod None
 post-mod None

Note that goal47 (i.e., “lover”) is now the head of goal48 which is the head of the
object-referring-expression (i.e., goal41) with goal39 (i.e., “dog”) functioning as
the head of goal40 which is functioning as a modifier of goal48. Also, note that goal33
(i.e., “old”) modifies goal39 (i.e., “dog”) and not goal48 (i.e., “dog lover”). This is
equivalent to the expression “the lover of old dogs” rather than “the old lover of dogs”,
both of which are possible interpretations. Having “old” modify “dog” rather than “dog
lover” is probably not the preferred interpretation of this piece of text, but it does point
out the advantage of having an implemented model to make such decision points
apparent. The current model can be modified to support the alternative interpretation by
addition of a production that has the intended effect, however, there is currently no
mechanism for preferring this new production over the existing production. Such a
mechanism would need to be able to distinguish between collocations like “old dog
lover” and collocations like “old house renovator” where the modification works the
other way.

Continuing with the next word “is” leads to the execution of the following productions:

 Time 2.590: Read-Next-Word
 Time 2.640: Find-Next-Word-Step-1-Option-1
 Time 2.690: Attend-Word-Option-2--Location-Retrieved
 Time 2.825: Encode-Word-Form
 Time 2.875: Is-Aux-Wf Retrieved
 Time 2.875: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 2.925: Retrieve-Word-Info
 Time 2.975: Is-Aux Retrieved
 Time 2.975: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 3.025: Convert-Word-To-Reg-Aux
 Time 3.025: Process--Default--Retrieve-Prev-Chunk
 Time 3.075: Goal41 Retrieved
 Time 3.075: Process-Reg-Aux--Default--Convert-To-Pred-Spec
 Time 3.125: Process--Default--Add-Chunks-To-Stack
 Time 3.175: Add-Chunks-To-Stack--Option-1
 Time 3.175: Add-Chunk-To-Stack

and the creation of the following chunks:

Goal54
 isa REG-AUX
 head Is-Aux
Goal55
 isa PRED-SPEC
 head Aux-1
 mod None
 modal-aux None
 neg None
 aux-1 Goal54
 aux-2 None
 aux-3 None

68

Note that the pred-spec chunk type has a modal-aux, neg, and three auxiliary slots
(aux-1, aux-2, and aux-3) to handle the range of predicate specifiers that can occur. For
this instance of a pred-spec (i.e., goal55), goal54 fills the aux-1 slot and functions as
the head of goal55.

The processing of the final word “asleep” executes the following productions:

 Time 3.175: Read-Next-Word
 Time 3.225: Find-Next-Word-Step-1-Option-1
 Time 3.275: Attend-Word-Option-2--Location-Retrieved
 Time 3.410: Encode-Word-Form
 Time 3.460: Asleep-Wf Retrieved
 Time 3.460: Retrieve-Word-Marker--Option-1--Marker-Retrieved
 Time 3.510: Retrieve-Word-Info
 Time 3.560: Asleep Retrieved
 Time 3.560: Retrieve-Word-Info--Option-1--Word-Info-Retrieved
 Time 3.610: Convert-Word-To-Adjective
 Time 3.610: Process-Adjective--Predicate-Context
 Time 3.660: Process--Default--Retrieve-Prev-Chunk
 Time 3.710: Goal55 Retrieved
 Time 3.710: Process-Pred-Type--Prev-Chunk-Is-Pred-Spec
 Time 3.760: Process--Default--Retrieve-Prev-Chunk
 Time 3.810: Goal41 Retrieved
 Time 3.810: Process-Pred-Type--Prev-Chunk-Is-Obj-Refer-Expr
 Time 3.860: Process--Default--Retrieve-Prev-Chunk
 Time 3.910: None Retrieved
 Time 3.910: Process--Default--Add-Chunks-To-Stack
 Time 3.960: Add-Chunks-To-Stack--Option-2
 Time 3.960: Add-Chunk-To-Stack

and creates the following declarative memory chunks:

Goal61
 isa ADJECTIVE
 head Asleep
Goal62
 isa PRED-ADJ
 head Goal61
 subj Goal41
 spec Goal55
 mod None
 post-mod None

In the context of the predicate specifier “is” (i.e., goal55), the adjective “asleep”
functions as a predicate adjective filling the head slot of goal62. Goal41 (an object
referring expression) fills the subj slot (i.e., subject) of goal62.

Following the processing of “asleep” the model attempts to read the next word, executing
the following productions:

 Time 3.960: Read-Next-Word
 Time 4.010: Find-Next-Word-Step-1-Option-1

69

 Time 4.060: Attend-Word-Option-1--Error-Retrieved
 Time 4.110: Attend-Word-Option-2--Error-Retrieved-Again
 Time 4.160: Process--Default--Retrieve-Prev-Chunk
 Time 4.210: Goal62 Retrieved
 Time 4.210: Process-End-Of-Sit--Pred-Type-Retrieved--Convert-To-Sit-
Refer-Expr
 Time 4.260: Process--Default--Retrieve-Prev-Chunk
 Time 4.310: None Retrieved
 Time 4.310: Process-Sit-Refer-Expr--Add-Chunks-To-Stack
 Time 4.360: Add-Chunks-To-Stack--Option-2
 Time 4.360: Add-Chunk-To-Stack
 Time 4.360: * Nothing to run: No productions, no events.

The failure to read a word signals the end of processing and a wrap-up production (i.e.,
process-end-of-sit—pred-type-retrieved—convert-to-sit-refer-expr) is
executed. This production converts goal62 into a situation referring expression resulting
in the creation of goal65 with goal62 filling the head slot.

Goal65
 isa SIT-REFER-EXPR
 head Goal62
 referent None-For-Now
 mod None

At the end of processing a single chunk of type situation-referring-expression is
available in the chunk-stack to support subsequent processing. Whether or not the
subject of the predicate-adjective should be separately available in the chunk-
stack to reflect the profiling of the subject in addition to the situation is an open research
question.

70

The Significance of Double R Theory

Double R Grammar provides a meaningful basis for understanding the linguistic
categories head, modifier, specifier and complement, and in so doing, clears up much of
the confusion that has resulted from the attempt to explicate these linguistic concepts in
purely distributional terms. Further, the consideration of relational meaning—especially
the consideration of relational meaning in object referring expressions (i.e., nominals)—
is an oft-overlooked dimension of meaning in most other grammatical approaches.
Finally, showing that referential and relational meaning can be integrated into a single
unified representation is the key contribution of Double R Grammar to the linguistic
study of language.

Double R Process is a psychologically plausible processing mechanism for constructing
representations of referential and referential meaning directly from input text without a
separate syntactic analysis component. Double R Process, together with Double R
Grammar, overcomes a key argument levied against numerous other “direct to meaning”
based approaches – representational inadequacy. Direct to meaning approaches typically
rely on the use of highly context dependent semantic categories (e.g., “vehicle-type”,
“employment-category”) or semantic primitives (e.g., PTRANS, “cause-not-be-alive”)
which have been shown to be representationally inadequate for representing the full range
of meaning based language variation. And propositional systems of representation which
are based on abstract concepts, beg the question of how one goes from linguistic input to
abstract concepts without relying on abstractions and simplifications that lead to similar
representational inadequacies. Double R Grammar avoids these representational
inadequacies by retaining the linguistic form of the input and not abstracting away from
that form. Double R Process demonstrates the viability of a bottom-up, lexically driven
approach to language comprehension based on a direct interpretation of text into meaning
without a separate syntactic analysis component, without a phrase structure grammar, and
without a special grammatical unit like the sentence (e.g., Townsend and Bever, 2001).

The explicit implementation of the underlying grammatical theory and processing
mechanism in a psychologically constrained cognitive modeling environment provides a
mechanism for testing and validating the theory. Further, Double R Model provides a
basis for the development of large-scale language comprehension systems—an atypical
goal for a psycholinguistically motivated language comprehension system.

The combination of an underlying linguistic theory for the integrated representation of
referential and relational meaning, a processing mechanism for constructing integrated
representations of referential and relational meaning, and a computational
psycholinguistic model that demonstrates the viability of the linguistic theory and
processing mechanism is a powerful demonstration of what can be achieved in an
interdisciplinary research program within the broad sweep of the cognitive sciences.

For additional details on Double R Theory, consult the Double R Theory website at
www.DoubleRTheory.com.

71

References

Abney, S. P. (1987). The English Noun Phrase in its Sentential Aspect. (Doctoral dissertation,
MIT, 1987).

Abney, S. P. (1991). Parsing by Chunks. In R. Berwick, S. Abney & C. Tenney (Eds.), Principle

Based Parsing: computation and psycholinguistics. (pp 257-278) Dordrecht: Kluwer
Academic Publishers.

Altmann, E. M. & Trafton J. G. (2002). Memory for goals: an activation-based model. Cognitive

Science, 26, 39-83.

Anderson, J. R. & Lebiere, C. (1998). The Atomic Components of Thought. Mahway, MJ:

Lawrence Erlbaum Associates.

Anderson, J. R. (1976). Language, Memory and Thought. Hillsdale, NJ: Lawrence Erlbaum

Associates; New York distributed by the Halsted Pre Division of Wiley.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard University

Press.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Lawrence Erlbaum Associates.

Anderson, J. R., Bothell, D., Byrne, M. D., & LeBiere, C (2002). An Integrated Theory of the

Mind. [On-line] from: http://act-r.psy.cmu.edu/papers/403/IntegratedTheory.pdf.

Arbib, M. & Hill, J. (1988). Language Acquisition: Schemas Replace Universal Grammar. In J.

Hawkins (Ed.), Explaining Language Universals. (pp 56-72) Oxford: Basil Blackwell.

Ball, J. (1991). Parsing English Directly into Propositional Representations. In M. F. McTear & N.

Creaney (Eds.), AI and Cognitive Science ’90: University of Ulster at Jordanstown, 20-21
September 1990. (pp 244-253) New York: Springer-Verlag.

Ball, J. (1992). PM, Propositional Model, a Computational Psycholinguistic Model of Language

Comprehension Based on a Relational Analysis of Written English. Ann Arbor, MI: UMI
Dissertation Information Service. (University Microfilms No. 9214700).

Ball, J. (2003). Towards a Semantics of X-Bar Theory. (Manuscript in preparation a).

Ball, J. (2003). Towards an Ontology of Referential Types. (Manuscript in preparation b).

Barsalou, L. W. (1999). Perceptual Symbol Systems. Behavioral and Brain Sciences, 22, 577-

609.

Barwise, J. & Perry, J. (1983). Situations and Attitudes. Cambridge, MA: MIT Press.

Berwick, R. C. & Weinberg, A. S. (1984). The Grammatical Basis of Linguistic Performance:

language use and acquisition. Cambridge, MA: MIT Press.

Bloomfield, L. (1933). Language. New York: Holt, Rinehart & Winston.

Cann, R. (1999). Specifiers as Secondary Heads. In D. Adger, S. Pintzuk, B. Plunkett, & G.

Tsoulas, (Eds.), Specifiers: Minimalist Approaches. (pp 21-45) Oxford: Oxford
University Press.

72

Chomsky, N. (1970). Remarks on nominalization. In R. Jacobs & P. Rosenbaum (Ed), Readings
in English Transformational Grammar. (pp 184-221) Boston: Ginn.

Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht-Holland: Foris.

Chomsky, N. (1982). Some Concepts and Consequences of the Theory of Government and

Binding. Cambridge, MA: MIT Press.

Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT Press.

Clark, H. (1983). Making sense of nonce sense. In G. B. Flores d’Arcais & R. J. Jarvella (Eds.),

The Process of Language Understanding. , New York: John Wiley.

Collins, A. M. & Loftus, E. (1975). A Spreading-Activation Theory of Semantic Priming.

Psychological Review, 82, 407-428.

Collins, A. M. & Quillian, M. R. (1969). Retrieval time from semantic memory. Journal of Verbal

Learning and Verbal Behavior, 8, 240-248.

Conrad, C. (1972). Cognitive Economy in Semantic Memory. Journal of Experimental

Psychology, 92, 149-154.

CYC [Computer software and manual]. Retrieved December 15, 2003, from: http://www.cyc.com

Ernst, T. (1991). A Phrase Structure Theory of Tertiaries. In S. D. Rothstein (Ed.), Perspectives

on Phrase Structure: heads and licensing. Syntax and Semantics 25. New York:
Academic Press.

Fillmore, C. (1977). Scenes-and-frames semantics. In A. Zampolli (Ed.), Linguistic Structures

Processing. (pp. 55-82). Holland: North Holland Publishing Co.

FrameNet [Computer software and manual]. Retrieved December 15, 2003, from:

http://www.icsi.berkeley.edu/~framenet/

Frazier, L. & Fodor, J. D. (1978). The sausage machine: a new two-stage parsing model.

Cognition, 6, 291-325.

Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalized Phrase Structure Grammar.

Cambridge, MA: Harvard University Press.

Gomez, R. L. & Gerken, L. A. (2000). Infant artificial language learning and language acquisition.

Trends in Cognitive Sciences, 4, 178-186.

Hawkins, J. A. (1984). Modifier-Head or Function-Argument Relations in Phrase Structure? The

evidence of some word order universals. Lingua 63, 107-138.

Hocket, C. (1958). A Course in Modern Linguistics. New York: MacMillan Company.

Hudson, R. (1984). Word Grammar. Oxford: Basil Blackwell.

Jackendoff, R. (1977). X-Bar Syntax: a study of phrase structure. Cambridge, MA: MIT Press.

Jackendoff, R. (1983). Semantics and Cognition. Cambridge, MA: MIT Press.

Jackendoff, R. (2002). Foundations of Language: brain, meaning, grammar, and evolution. New

York: Oxford University Press.

73

Johnson-Laird, P. N. (1983). Mental Models: towards a cognitive science of language, inference,
and consciousness. Cambridge, MA: Harvard University Press.

Kamp, H. and Reyle, U. (1993). From discourse to logic: Introduction to the model theoretic

semantics of natural language, formal logic and discourse representation theory.
Dordrecht: Kluwer Academic Publishers.

Kempen, G. (1996). Computational Models of Syntactic Processing in Language

Comprehension. In T. Dijkstra, & K. de Smedt, Computational Psycholinguistics, AI and
Connectionist Models of Human Language Processing. (pp 192-220) London: Taylor &
Francis Ltd.

Kintsch, W. (1998). Comprehension, a Paradigm for Cognition. New York: Cambridge University

Press.

Kintsch, W. (2001). Predication. Cognitive Science, 25, 173-202.

Lakoff, G. (1987). Women, Fire and Dangerous Things: what categories reveal about the mind.

Chicago: University of Chicago Press.

Lakoff, G. (1988). “Cognitive Semantics.” In Meaning and Mental Representation. U. Eco, M.

Santambrogio & P. Violi (Ed). Indianapolis: Indiana University Press.

Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. Chicago: University of Chicago Press.

Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato’s problem: The Latent Semantic

Analysis theory of acquisition, induction, and representation of knowledge. Psychological
Review, 104, 211-240.

Langacker, R. W. (1987). Foundations of Cognitive Grammar, Volume 1, Theoretical

Prerequisites. Stanford, CA: Stanford University Press.

Langacker, R. W. (1991). Foundations of Cognitive Grammar, Volume 2, Descriptive Application.

Stanford, CA: Stanford University Press.

Langacker, R. W. (1998). Conceptualization, Symbolization, and Grammar. In M. Tomasello

(Ed.), The New Psychology of Language: Cognitive and Functional Approaches to
Language Structure. (pp 1-39) Mahway, NJ: Lawrence Erlbaum Associates.

Latent Semantic Analysis (LSA) [Computer software and manual]. Retrieved December 15,

2003, from: http://lsa.colorado.edu/

Lyons, J. (1968). Introduction to Theoretical Linguistics. New York: Cambridge University Press.

Meyer, D. E., & Schvaneveldt, R. W. (1971). Facilitation in recognizing pairs of words: evidence

of a dependence between retrieval operations. Journal of Experimental Psychology, 90,
227-234.

Nirenburg, S., & Raskin, V. (1996). Ten choices for lexical semantics. Memoranda in Computer

and Cognitive Science, MCCS-96-304. Las Cruces, NM: New Mexico State University,
Computing Research Laboratory.

Pullum, G. K. (1991). English nominal gerunds as noun phrases with verb phrase heads.

Linguistics, 29, 763-799.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1972). A Grammar of Contemporary English.

London: Longman.

74

Rosch, E. (1978). Principles of Categorization. In Cognition and Categorization, E. Rosch & B. B.

Lloyd (Ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

Sadler, L. & Arnold, D. J. (1994). Prenominal adjectives and the phrasal/lexical distinction.
Journal of Linguistics, 30, 187-226.

Speas, M. (1990). Phrase Structure in Natural Language. Dordrecht: Kluwer Academic Press.

Steedman, M. (2000). The Syntactic Process. Cambridge, MA: MIT Press.

Stowell, T. (1989). Subjects, Specifiers, and X-Bar Theory. In M. Baltin & A. Kroch (Eds.),

Alternative Conceptions of Phrase Structure. (pp 232-262) Chicago: University of
Chicago Press.

Talmy, L. (2003). Toward a Cognitive Semantics, Vols I and II. Cambridge, MA: MIT Press.

Taylor, J. (1991). Linguistic Categorization: Prototypes in Linguistic Theory. Oxford: Clarendon

Press.

Thomason, R., H. & Stalnaker, R. (1973). A Semantic Theory of Adverbs. Linguistic Inquiry, 4,

195-220.

Tomasello, M. (Ed.) (1998). The New Psychology of Language. Mahway, NJ: Lawrence

Erlbaum Associates.

Townsend, D. J. & Bever, T. G. (2001). Sentence Comprehension: the integration of rules and

habits. Cambridge, MA: MIT Press.

Wilks, Y. (1975). Preference Semantics. In E. Keenan (Ed.), Formal Semantics of Natural

Language: papers from a colloquium sponsored by King’s College Research Centre,
Cambridge. (pp 329-348) NY: Cambridge University.

Wittgenstein, L. (1953). Philosophical Investigations; the English text of the third edition.

Translated by G.E.M. Anscombe. New York: MacMillan.

WordNet®. [Computer software and manual]. Retrieved December 15, 2003, from:
http://www.cogsci.princeton.edu/~wn/

